2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于扇形区域分割的SIFT特征描述符

曾峦 顾大龙

曾峦, 顾大龙. 一种基于扇形区域分割的SIFT特征描述符. 自动化学报, 2012, 38(9): 1513-1519. doi: 10.3724/SP.J.1004.2012.01513
引用本文: 曾峦, 顾大龙. 一种基于扇形区域分割的SIFT特征描述符. 自动化学报, 2012, 38(9): 1513-1519. doi: 10.3724/SP.J.1004.2012.01513
ZENG Luan, GU Da-Long. A SIFT Feature Descriptor Based on Sector Area Partitioning. ACTA AUTOMATICA SINICA, 2012, 38(9): 1513-1519. doi: 10.3724/SP.J.1004.2012.01513
Citation: ZENG Luan, GU Da-Long. A SIFT Feature Descriptor Based on Sector Area Partitioning. ACTA AUTOMATICA SINICA, 2012, 38(9): 1513-1519. doi: 10.3724/SP.J.1004.2012.01513

一种基于扇形区域分割的SIFT特征描述符

doi: 10.3724/SP.J.1004.2012.01513
详细信息
    通讯作者:

    曾峦

A SIFT Feature Descriptor Based on Sector Area Partitioning

  • 摘要: 提出了一种在圆形区域内基于扇形区域分割的特征描述符构建方法. 首先, 针对SIFT描述符维数过高, 导致匹配速度慢的弱点, 提出在半径为9像素的圆形特征区域内划分为8个扇区, 在这些扇形特征邻域内统计8个方向的灰度梯度直方图, 形成64维描述符的方法,降低了描述符的维数. 同时, 针对SIFT构建描述符的运算复杂性较高的事实, 提出在圆形区域内计算像素灰度梯度主方向, 以主方向为基准点把该区域划分为8个等面积扇区的方法, 取消了对特征区域的旋转变换, 降低了构建描述符的运算复杂性. 通过与OpenCV SIFT和Lowe SIFT进行多方面对比实验, 结果表明该方法的综合匹配速度具有显著提升, 在两幅图像存在一定程度的视点、模糊、旋转、比例、光照变化等情形下, 匹配性能有所增强.
  • [1] Zhuang Yan, Chen Dong, Wang Wei, Han Jian-Da, Wang Yue-Chao. Status and development of natural scene understanding for vision-based outdoor mobile robot. Acta Automatica Sinica, 2010, 36(1): 1-11(庄严, 陈东, 王伟, 韩建达, 王越超. 移动机器人基于视觉室外自然场景理解的研究与进展. 自动化学报, 2010, 36(1): 1-11)[2] Lin Hai-Feng, Ma Yu-Feng, Song Tao. Research on object tracking algorithm based on SIFT. Acta Automatica Sinica, 2010, 36(8): 1204-1208(蔺海峰, 马宇峰, 宋涛. 基于SIFT特征目标跟踪算法研究. 自动化学报, 2010, 36(8): 1204-1208)[3] Lowe D G. Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 1150-1157[4] Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110[5] Mikolajczyk K, Matas J. Improving descriptors for fast tree matching by optimal linear projection. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8[6] Klare B, Li Z F, Jain A K. Matching forensic sketches to mug shot photos. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 639-646[7] Liu Li, Peng Fu-Yuan, Zhao Kun, Wan Ya-Ping. Simplified SIFT algorithm for fast image matching. Infrared and Laser Engineering, 2008, 37(1): 181-184(刘立, 彭复员, 赵坤, 万亚平. 采用简化SIFT算法实现快速图像匹配. 红外与激光工程, 2008, 37(1): 181-184)[8] Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630[9] Huang C R, Chen C S, Chung P C. Contrast context histogram —— an efficient discriminating local descriptor for object recognition and image matching. Pattern Recognition, 2008, 41(10): 3071-3077[10] Liu Ping-Ping, Zhao Hong-Wei, Zang Xue-Bai, Dai Jin-Bo. A fast local feature description algorithm. Acta Automatica Sinica, 2010, 36(1): 40-45(刘萍萍, 赵宏伟, 臧雪柏, 戴金波. 一种快速局部特征描述算法. 自动化学报, 2010, 36(1): 40-45)[11] Tola E, Lepetit V, Fua P. DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-830[12] Lv Ji, Gao Hong-Min, Wang Bo, Zhou Zhi-Qiang. Fast SIFT algorithm for autonomous image guidance. Systems Engineering and Electronics, 2009, 31(5): 1147-1151(吕冀, 高洪民, 汪渤, 周志强. 图像制导中的SIFT快速算法. 系统工程与电子技术, 2009, 31(5): 1147-1151)[13] Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2004. 506-513[14] Wong Y M. Invariant Local Feature for Image Matching [Master dissertation], Chinese University of Hong Kong, China, 2006[15] Cui Y, Hasler N, Thormahlen T, Seidel H P. Scale invariant feature transform with irregular orientation histogram binning. In: Proceedings of the 6th International Conference on Image Analysis and Recognition. Halifax, Canada: Springer, 2009. 258-267[16] Chen J, Shan S G, He C, Zhao G Y, Pietikainen M, Chen X L, Gao W. WLD: a robust local image descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1705-1720[17] Heikkil M, Pietikainen M, Schmid C. Description of interest regions with local binary patterns. Pattern Recognition, 2009, 42(3): 425-436[18] Zeng Hui, Mu Zhi-Chun, Wang Xiu-Qing. A robust method for local image feature region description. Acta Automatica Sinica, 2011, 37(6): 658-664(曾慧, 穆志纯, 王秀青. 一种鲁棒的图像局部特征区域的描述方法. 自动化学报, 2011, 37(6): 658-664)[19] Bay H, Ess A, Tuytelaars T, Gool L V. SURF: speeded up robust features. Computer Vision and Image Understanding, 2008, 110(3): 346-359[20] Meng Fan-Jie, Guo Bao-Long. Image retrieval by using local distribution features of interest points and multiple-instance learning. Journal of Xidian University (Natural Science), 2011, 38(2): 47-53(孟繁杰, 郭宝龙. 使用兴趣点局部分布特征及多示例学习的图像检索方法. 西安电子科技大学学报(自然科学版), 2011, 38(2): 47- 53)[21] Li C L, Ma L Z. A new framework for feature descriptor based on SIFT. Pattern Recognition Letters, 2009, 30(5): 544-557[22] Zeng L, Tan J B. Robust matching algorithm for image mosaic. In: Proceedings of the 6th International Symposium on Precision Engineering Measurements and Instrumentation. Hangzhou, China: SPIE, 2010. 166-175
  • 加载中
计量
  • 文章访问数:  1920
  • HTML全文浏览量:  59
  • PDF下载量:  1728
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-03
  • 修回日期:  2011-09-14
  • 刊出日期:  2012-09-20

目录

    /

    返回文章
    返回