2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维投影非负矩阵分解算法及其在人脸识别中的应用

方蔚涛 马鹏 成正斌 杨丹 张小洪

方蔚涛, 马鹏, 成正斌, 杨丹, 张小洪. 二维投影非负矩阵分解算法及其在人脸识别中的应用. 自动化学报, 2012, 38(9): 1503-1512. doi: 10.3724/SP.J.1004.2012.01503
引用本文: 方蔚涛, 马鹏, 成正斌, 杨丹, 张小洪. 二维投影非负矩阵分解算法及其在人脸识别中的应用. 自动化学报, 2012, 38(9): 1503-1512. doi: 10.3724/SP.J.1004.2012.01503
FANG Wei-Tao, MA Peng, CHENG Zheng-Bin, YANG Dan, ZHANG Xiao-Hong. 2-dimensional Projective Non-negative Matrix Factorization and Its Application to Face Recognition. ACTA AUTOMATICA SINICA, 2012, 38(9): 1503-1512. doi: 10.3724/SP.J.1004.2012.01503
Citation: FANG Wei-Tao, MA Peng, CHENG Zheng-Bin, YANG Dan, ZHANG Xiao-Hong. 2-dimensional Projective Non-negative Matrix Factorization and Its Application to Face Recognition. ACTA AUTOMATICA SINICA, 2012, 38(9): 1503-1512. doi: 10.3724/SP.J.1004.2012.01503

二维投影非负矩阵分解算法及其在人脸识别中的应用

doi: 10.3724/SP.J.1004.2012.01503
详细信息
    通讯作者:

    马鹏

2-dimensional Projective Non-negative Matrix Factorization and Its Application to Face Recognition

  • 摘要: 建立在最小化非负矩阵分解损失函数上的人脸识别算法需同时计算基矩阵和系数矩阵, 导致求解这类问题十分耗时. 本文把非负属性引入二维主成分分析(2-dimensional principal component analysis, 2DPCA)中, 提出了一种新的二维投影非负矩阵分解(2-dimensional projective non-negative matrix factorization, 2DPNMF)人脸识别算法. 该算法在保持人脸图像的局部结构情况下, 突破了最小化非负矩阵分解损失函数的约束, 仅需计算投影矩阵(基矩阵), 从而降低了计算复杂度. 本文从理论上证明了所提出算法的收敛性, 同时, 使用了YALE、FERET和AR三个人脸库进行实验, 结果表明2DPNMF不仅识别率高, 而且速度优于非负矩阵分解和二维主成分分析.
  • [1] Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86[2] Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720[3] He X F, Yan S C, Hu Y X, Niyogi P, Zhang H J. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340[4] Yang M H. Kernel eigenfaces vs. kernel fisherfaces: face recognition using kernel methods. In: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. Washington, DC: IEEE, 2002. 215-220[5] Yang J, Zhang D, Frangi A F, Yang J Y. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137[6] Li M, Yuan B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 2005, 26(5): 527-532[7] Chen S B, Zhao H F, Kong M, Luo B. 2D-LPP: a two-dimensional extension of locality preserving projections. Neurocomputing, 2007, 70(4-6): 912-921[8] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401(6755): 788-791[9] Zhang T P, Fang B, Tang Y Y, He G H, Wen J. Topology preserving non-negative matrix factorization for face recognition. IEEE Transactions on Image Processing, 2008, 17(4): 574-584[10] Liang Z Z, Li Y F, Zhao T. Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications. Signal Processing, 2010, 90(7): 2150-2163[11] Pan B B, Lai J H, Chen W S. Nonlinear nonnegative matrix factorization based on Mercer kernel construction. Pattern Recognition, 2011, 44(10-11): 2800-2810[12] Zhi R C, Flierl M, Ruan Q Q, Kleijn W B. Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition. IEEE Transactions on Systems, Man, and Cybernetics, 2011, 41(1): 38-52[13] Guan N Y, Tao D C, Luo Z G, Yuan B. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent. IEEE Transactions on Image Processing, 2011, 20(7): 2030-2048[14] Li Le, Zhang Yu-Jin. Linear projection-based non-negative matrix factorization. Acta Automatica Sinica, 2010, 36(1): 23-39(李乐, 章毓晋. 基于线性投影结构的非负矩阵分解. 自动化学报, 2010, 36(1): 23-39)[15] Yan Hui, Jin Zhong, Yang Jing-Yu. Non-negative two-dimensional principal component analysis and its application to face recognition. Pattern Recognition and Artificial Intelligence, 2009, 22(6): 809-814(严慧, 金忠, 杨静宇. 非负二维主成分分析及在人脸识别中的应用. 模式识别与人工智能, 2009, 22(6): 809-814)[16] Zhang D Q, Chen S C, Zhou Z H. Two-dimensional non-negative matrix factorization for face representation and recognition. In: Proceedings of the 2nd International Workshop on Analysis and Modelling of Faces and Gestures. Beijing, China: LNCS, 2005. 350-363[17] Zass R, Shashua A. Nonnegative sparse PCA. Advances in Neural Information Processing Systems. Cambridge, MA: The MIT Press, 2007. 1561-1568[18] Lee D D, Seung H S. Algorithms for non-negative matrix factorization. In: Proceedings of the 2000 Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2000. 556-562[19] Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660[20] Phillips P J, Wechsler H, Huang J, Rauss P J. The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing, 1998, 16(5): 295-306[21] Martínez A, Benavente R. The AR Face Database, Technical Report #24, Purdue University, USA, 1998[22] Li Z, Wu X D, Peng H. Nonnegative matrix factorization on orthogonal subspace. Pattern Recognition Letters, 2010, 31(9): 905-911
  • 加载中
计量
  • 文章访问数:  2424
  • HTML全文浏览量:  84
  • PDF下载量:  1163
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-03
  • 修回日期:  2012-03-19
  • 刊出日期:  2012-09-20

目录

    /

    返回文章
    返回