[1]
|
Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86[2] Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720[3] He X F, Yan S C, Hu Y X, Niyogi P, Zhang H J. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340[4] Yang M H. Kernel eigenfaces vs. kernel fisherfaces: face recognition using kernel methods. In: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. Washington, DC: IEEE, 2002. 215-220[5] Yang J, Zhang D, Frangi A F, Yang J Y. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137[6] Li M, Yuan B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 2005, 26(5): 527-532[7] Chen S B, Zhao H F, Kong M, Luo B. 2D-LPP: a two-dimensional extension of locality preserving projections. Neurocomputing, 2007, 70(4-6): 912-921[8] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401(6755): 788-791[9] Zhang T P, Fang B, Tang Y Y, He G H, Wen J. Topology preserving non-negative matrix factorization for face recognition. IEEE Transactions on Image Processing, 2008, 17(4): 574-584[10] Liang Z Z, Li Y F, Zhao T. Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications. Signal Processing, 2010, 90(7): 2150-2163[11] Pan B B, Lai J H, Chen W S. Nonlinear nonnegative matrix factorization based on Mercer kernel construction. Pattern Recognition, 2011, 44(10-11): 2800-2810[12] Zhi R C, Flierl M, Ruan Q Q, Kleijn W B. Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition. IEEE Transactions on Systems, Man, and Cybernetics, 2011, 41(1): 38-52[13] Guan N Y, Tao D C, Luo Z G, Yuan B. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent. IEEE Transactions on Image Processing, 2011, 20(7): 2030-2048[14] Li Le, Zhang Yu-Jin. Linear projection-based non-negative matrix factorization. Acta Automatica Sinica, 2010, 36(1): 23-39(李乐, 章毓晋. 基于线性投影结构的非负矩阵分解. 自动化学报, 2010, 36(1): 23-39)[15] Yan Hui, Jin Zhong, Yang Jing-Yu. Non-negative two-dimensional principal component analysis and its application to face recognition. Pattern Recognition and Artificial Intelligence, 2009, 22(6): 809-814(严慧, 金忠, 杨静宇. 非负二维主成分分析及在人脸识别中的应用. 模式识别与人工智能, 2009, 22(6): 809-814)[16] Zhang D Q, Chen S C, Zhou Z H. Two-dimensional non-negative matrix factorization for face representation and recognition. In: Proceedings of the 2nd International Workshop on Analysis and Modelling of Faces and Gestures. Beijing, China: LNCS, 2005. 350-363[17] Zass R, Shashua A. Nonnegative sparse PCA. Advances in Neural Information Processing Systems. Cambridge, MA: The MIT Press, 2007. 1561-1568[18] Lee D D, Seung H S. Algorithms for non-negative matrix factorization. In: Proceedings of the 2000 Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2000. 556-562[19] Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660[20] Phillips P J, Wechsler H, Huang J, Rauss P J. The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing, 1998, 16(5): 295-306[21] Martínez A, Benavente R. The AR Face Database, Technical Report #24, Purdue University, USA, 1998[22] Li Z, Wu X D, Peng H. Nonnegative matrix factorization on orthogonal subspace. Pattern Recognition Letters, 2010, 31(9): 905-911
|