2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二进神经网络中汉明球突的判定及其逻辑意义

杨娟 陆阳 俞磊 方欢

杨娟, 陆阳, 俞磊, 方欢. 二进神经网络中汉明球突的判定及其逻辑意义. 自动化学报, 2012, 38(9): 1459-1470. doi: 10.3724/SP.J.1004.2012.01459
引用本文: 杨娟, 陆阳, 俞磊, 方欢. 二进神经网络中汉明球突的判定及其逻辑意义. 自动化学报, 2012, 38(9): 1459-1470. doi: 10.3724/SP.J.1004.2012.01459
YANG Juan, LU Yang, YU Lei, FANG Huan. The Judgment for Hamming Sphere Dimple in Binary Neural Networks and Its Logical Meaning. ACTA AUTOMATICA SINICA, 2012, 38(9): 1459-1470. doi: 10.3724/SP.J.1004.2012.01459
Citation: YANG Juan, LU Yang, YU Lei, FANG Huan. The Judgment for Hamming Sphere Dimple in Binary Neural Networks and Its Logical Meaning. ACTA AUTOMATICA SINICA, 2012, 38(9): 1459-1470. doi: 10.3724/SP.J.1004.2012.01459

二进神经网络中汉明球突的判定及其逻辑意义

doi: 10.3724/SP.J.1004.2012.01459
详细信息
    通讯作者:

    陆阳

The Judgment for Hamming Sphere Dimple in Binary Neural Networks and Its Logical Meaning

  • 摘要: 在布尔空间中,汉明球突表达了一类结构清晰的布尔函数, 由于其特殊的几何特性,存在线性可分与线性不可分两种空间结构. 剖析汉明球突的逻辑意义对二进神经网络的规则提取十分重要, 然而,从线性可分的汉明球突中提取具有清晰逻辑意义的规则, 以及如何判定非线性可分的汉明球突,并得到其逻辑意义,仍然是二进神经网络研究中尚未很好解决的问题. 为此,本文首先根据汉明球突在汉明图上的几何特性, 采用真节点加权高度排序的方法, 提出对于任意布尔函数是否为汉明球突的判定算法;然后, 在此基础上利用已知结构的逻辑意义, 将汉明球突分解为若干个已知结构的并集,从而得到汉明球突的逻辑意义; 最后,通过实例说明判定任意布尔函数是否为汉明球突的过程, 并相应得到汉明球突的逻辑表达.
  • [1] Lu Yang, Wei Zhen, Gao Jun, Han Jiang-Hong. Logical meaning of Hamming sphere and its general judgement method in binary neural networks. Journal of Computer Research and Development, 2002, 39(1): 79-86(陆阳, 魏臻, 高隽, 韩江洪. 二进神经网络中汉明球的逻辑意义及一般判别方法. 计算机研究与发展, 2002, 39(1): 79-86)[2] Huynh T Q, Reggia J A. Guiding hidden layer representations for improved rule extraction from neural networks. IEEE Transactions on Neural Networks, 2011, 22(2): 264-275[3] Diederich J, Tickle A B, Geva S. Quo Vadis. Reliable and practical rule extraction from neural networks. In: Proceedings of the Advances in Machine Learning I, Studies in Computational Intelligence. Berlin, Heidelberg: Spring, 2010, 262: 479-490[4] Zhou Zhi-Hua, Chen Shi-Fu. Rule extraction from neural networks. Journal of Computer Research and Development, 2002, 39(4): 398-405(周志华, 陈世福. 神经网络规则抽取. 计算机研究与发展, 2002, 39(4): 398-405)[5] Zhou Zhi-Hua, He Jia-Zhou, Yin Xu-Ri, Chen Zhao-Qian. A statistics-based approach for rule extraction from neural networks. Journal of Software, 2001, 12(2): 263-269 (周志华, 何佳州, 尹旭日, 陈兆乾. 一种基于统计的神经网络规则抽取方法. 软件学报, 2001, 12(2): 263-269)[6] Chen Guo. Method for rule extraction from neural networks based on functional point of view. Pattern Recognition and Artificial Intelligence, 2008, 21(6): 787-793 (陈果. 一种基于功能性观点的神经网络规则提取方法. 模式识别与人工智能, 2008, 21(6): 787-793)[7] Setiono R. Extracting M-of-N rules from trained neural networks. IEEE Transactions on Neural Networks, 2000, 11(2): 512-519[8] Bader S, Holldobler S, Mayer-Eichberger B. Extracting propositional rules from feed-forward neural networks: a new decompositional approach. In: Proceedings of the 3rd International Workshop on Neural-Symbolic Learning and Reasoning. Hyderabad, India: IJCAI, 2007. 1-6[9] Bader S. Extracting propositional rules from feed-forward neural networks by means of binary decision diagrams. In: Proceedings of the 5th International Workshop on Neural-Symbolic Learning and Reasoning. Pasadena, California, USA, 2009. 22-27[10] Darbari A. Rule Extraction from Trained ANN: a Survey. Technical Report, Institute of Artificial Intelligence, Department of Computer Science, TU Dresden, Germany, 2001[11] Tsopze N, Mephu-Nguifo E, Tindo G. Towards a generalization of decompositional approach of rule extraction from multilayer artificial neural network. In: Proceedings of the 2011 International Joint Conference on Neural Networks. San Jose, California, USA: IEEE, 2011. 1562-1569[12] Lu Yang, Han Jiang-Hong, Zhang Wei-Yong. Logical relation determination criteria and equivalence rule extraction on binary neural networks. Pattern Recognition and Artificial Intelligence, 2001, 14(2): 171-176 (陆阳, 韩江洪, 张维勇. 二进神经网络逻辑关系判据及等价规则提取. 模式识别与人工智能, 2001, 14(2): 171-176)[13] Lu Yang, Han Jiang-Hong, Wei Zhen. A general judging and constructing method of SP functions in binary neural networks. Acta Automatica Sinica, 2003, 29(2): 234-241(陆阳, 韩江洪, 魏臻. 二进神经网络中SP函数的一般判别和构造方法. 自动化学报, 2003, 29(2): 234-241)[14] Lu Yang, Han Jiang-Hong, Zhang Wei-Yong. Study of Cartesian sphere in binary neural networks. Pattern Recognition and Artificial Intelligence, 2004, 17(3): 368-373 (陆阳, 韩江洪, 张维勇. 二进神经网络中笛卡尔球的研究. 模式识别与人工智能, 2004, 17(3): 368-373)[15] Yang Juan, Lu Yang, Huang Zhen-Jin, Wang Qiang. Hamming sphere dimple in binary neural networks and its linear separability. Acta Automatica Sinica, 2011, 37(6): 737-745 (杨娟, 陆阳, 黄振谨, 王强. 二进神经网络中的汉明球突及其线性可分性. 自动化学报, 2011, 37(6): 737-745)[16] Kim J H, Park S K. The geometrical learning of binary neural networks. IEEE Transactions on Neural Networks, 1995, 6(1): 237-247[17] Ma Xiao-Min, Yang Yi-Xian, Zhang Zhao-Zhi. A new framework and some results for threshold function. Chinese Journal of Computers, 2000, 23(3): 225-230 (马晓敏, 杨义先, 章照止. 一种新的阈函数的分析框架及有关结论. 计算机学报, 2000, 23(3): 225-230)[18] Hua Qiang, Zheng Qi-Lun. The Hamming-graph learning algorithm of BNN. Chinese Journal of Computers, 2001, 24(11): 1250-1255 (华强, 郑启伦. 二进神经网络的汉明图学习算法. 计算机学报, 2001, 24(11): 1250-1255)[19] Gray D L, Michel A N. A training algorithm for binary feedforward neural networks. IEEE Transactions on Neural Networks, 1992, 3(2): 176-194[20] Ma Xiao-Min, Yang Yi-Xian, Zhang Zhao-Zhi. Research on the learning algorithm of binary neural network. Chinese Journal of Computers, 1999, 22(9): 931-935 (马晓敏, 杨义先, 章照止. 二进神经网络学习算法研究. 计算机学报, 1999, 22(9): 931-935)[21] Chen F Y, Chen G R, He Q B, He G L, Xu X B. Universal perceptron and DNA-like learning algorithm for binary neural networks: non-LSBF implementation. IEEE Transactions on Neural Networks, 2009, 20(8): 1293-1301
  • 加载中
计量
  • 文章访问数:  1723
  • HTML全文浏览量:  39
  • PDF下载量:  665
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-14
  • 修回日期:  2012-04-09
  • 刊出日期:  2012-09-20

目录

    /

    返回文章
    返回