[1]
|
Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227[2] Huang J Z, Huang X L, Metaxas D. Simultaneous image transformation and sparse representation recovery. In: Proceedings of the 26th IEEE Conference on Computer Vision and Image Recognition. Anchorage, United States: IEEE, 2008. 1-8[3] Wagner A, Wright J, Ganesh A, Zhou Z H, Ma Y. Towards a practical face recognition system: robust registration and illumination by sparse representation. In: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Image Recognition Workshops. Miami, United States: IEEE, 2009. 597-604[4] Wright J, Ma Y. Dense error correction via l1 minimization. IEEE Transactions on Information Theory, 2010, 56(7): 3540-3560[5] Yang M, Zhang L, Yang J, Zhang D. Robust sparse coding for face recognition. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Image Recognition. Springs, United States: IEEE, 2011. 625-632[6] He R, Hu B G, Zheng W S, Guo Y Q. Two-stage sparse representation for robust recognition on large-scale database. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence and the 22nd Innovative Applications of Artificial Intelligence Conference. Atlanta, United States: AAAI, 2010. 475-480[7] Huang J B, Yang M H. Fast sparse representation with prototypes. In: Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Image Recognition. San Francisco, United States: IEEE, 2010. 3618-3625[8] Li C G, Guo J, Zhang H G. Local sparse representation based classification. In: Proceedings of the 2010 International Conference on Pattern Recognition. Istanbul, Turkey: ICPR, 2010. 649-652[9] Zhang N, Yang J. K nearest neighbor based local sparse representation classifier. In: Proceedings of the 2010 Chinese Conference on Pattern Recognition. Chongqing, China: CCPR, 2010. 400-404[10] Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B, 2011, 73(3): 273-282[11] Zhang J, Jin R, Yang Y M, Hauptmann A G. Modified logistic regression: an approximation to SVM and its applications in large-scale text categorization. In: Proceedings of the 20th International Conference on Machine Learning. Washington, United states: ICML, 2003. 888-895
|