2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种小型无人直升机自主起飞控制方法

杜玉虎 房建成 盛蔚 雷旭升

杜玉虎, 房建成, 盛蔚, 雷旭升. 一种小型无人直升机自主起飞控制方法. 自动化学报, 2012, 38(8): 1385-1393. doi: 10.3724/SP.J.1004.2012.01385
引用本文: 杜玉虎, 房建成, 盛蔚, 雷旭升. 一种小型无人直升机自主起飞控制方法. 自动化学报, 2012, 38(8): 1385-1393. doi: 10.3724/SP.J.1004.2012.01385
DU Yu-Hu, FANG Jian-Cheng, SHENG Wei, LEI Xu-Sheng. An Automatic Take-off Method for Small-scale Unmanned Helicopters. ACTA AUTOMATICA SINICA, 2012, 38(8): 1385-1393. doi: 10.3724/SP.J.1004.2012.01385
Citation: DU Yu-Hu, FANG Jian-Cheng, SHENG Wei, LEI Xu-Sheng. An Automatic Take-off Method for Small-scale Unmanned Helicopters. ACTA AUTOMATICA SINICA, 2012, 38(8): 1385-1393. doi: 10.3724/SP.J.1004.2012.01385

一种小型无人直升机自主起飞控制方法

doi: 10.3724/SP.J.1004.2012.01385
详细信息
    通讯作者:

    杜玉虎

An Automatic Take-off Method for Small-scale Unmanned Helicopters

  • 摘要: 针对小型无人直升机(Small-scale unmanned helicopter, SUH) 起飞过程中过度依赖于地面飞行手的问题, 提出了一种基于经验知识与系统辨识的自主起飞控制方法. 首先, 通过研究专业飞行手手动操纵小型无人直升机起飞过程中高度与油门、总距舵量等信息的对应关系, 分析了利用学习飞行手的操纵行为实现小型无人直升机自主起飞的可行性, 并设计了小型无人直升机自主起飞控制流程. 引入了安全高度及变增益控制以提高自主起飞过程中的飞行安全性能, 利用不完全微分控制方法抑制了微分高频噪声. 其次, 为了获取自主起飞过程中控制参数, 采用自适应遗传算法对小型无人直升机动力学模型进行了辨识, 在动力学模型的基础上进一步辨识得到了飞行控制参数. 最后, 通过在小型无人直升机平台进行的实际飞行实验, 验证了本文方法的有效性.
  • [1] Song Da-Lei, Qi Jun-Tong, Han Jian-Da, Wang Yue-Chao. Model identification and active modeling control for rotor fly-robot: theory and experiment. Acta Automatica Sinica, 2011, 37(4): 480-495(宋大雷, 齐俊桐, 韩建达, 王越超. 旋翼飞行机器人系统建模与主动模型控制理论及实验研究. 自动化学报, 2011, 37(4): 480-495)[2] Zheng B, Zhong Y S. Robust attitude regulation of a 3-DOF helicopter benchmark: theory and experiments. IEEE Transactions on Industrial Electronics, 2011, 58(2): 660-670[3] Attar M, Wahnon E, Chaimovitz D. Advanced flight control technologies for UAVs. In: Proceedings of 2nd AIAA "Unmanned Unlimited" Systems, Technologies, and Operations-Aerospac. San Diego, USA: AIAA, 2003. 1-9[4] Bskovi#263; J D, Redding J. An autonomous carrier landing system for unmanned aerial vehicles. In: Proceedings of Guidance, Navigation and Control Conference. Chicago: AIAA, 2009. 1-17[5] Suresh S, Kashyab P, Nabi M. Automatic take-off control system for helicopter —an H_∞ approach. In: Proceedings of the 11th International Conference on Control, Automation, Robotics and Vision. Singapore: IEEE, 2010. 2404-2408[6] Huang Y J, Kuo T C, Way H K. Robust vertical takeoff and landing aircraft control via integral sliding mode. IEE Proceedings-Control Theory and Applications, 2003, 150(4): 383-388[7] Wenzel K E, Zell A. Automatic take off, hovering and landing control for miniature helicopters with low-cost onboard hardware. In: Proceedings of the 2009 Autonome Mobile System. Karlsruhe, Germany: IEEE, 2009. 73-80[8] Wenzel K E, Masselli A, Zell A. Automatic take off, tracking and landing of a miniature UAV on a moving carrier vehicle. Journal of Intelligent and Robotic Systems, 2011, 61(1-4): 221-238[9] Kabassi K, Virvou M. A knowledge-based software life-cycle framework for the incorporation of multicriteria analysis in intelligent user interfaces. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(9): 1265-1277[10] Dong Q W, Zhou S G. Novel nonlinear knowledge-based mean force potentials based on machine learning. IEEE/ ACM Transactions on Computational Biology and Bioinformatics, 2011, 8(2): 476-486[11] Mettler B. Identification Modeling and Characteristics of Miniature Rotorcraft. Norwell, Massachusetts: Kluwser Academic Publishers, 2003. 55-60[12] Mettler B F. Modeling Small-scale Unmanned Rotorcraft for Advanced Flight Control Design [Ph.D. dissertation], Carnegie Mellon University, Pittsburgh, 2001[13] Tao Ye, Fang Jian-Cheng, Sheng Wei. Design and realization of piecewise PID controller with deadzone for micro UAV. Acta Automatica Sinica, 2008, 34(6): 716-721(陶冶, 房建成, 盛蔚. 一种微小型无人机带死区变增益PID自适应控制器的设计与实现. 自动化学报, 2008, 34(6): 716-721)[14] Tsai C W, Lin C L, Huang C H. Microbrushless DC motor control design based on real-coded structural genetic algorithm. IEEE/ASME Transactions on Mechatronics, 2011, 16(1): 151-159[15] Tsai C C, Huang H C, Chan C K. Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4813-4821[16] Lei X S, Du Y H. A linear domain system identification for small unmanned aerial rotorcraft based on adaptive genetic algorithm. Journal of Bionic Engineering, 2007, 7(2): 142-149[17] Fang J C, Sun H W, Cao J J, Zhang X, Tao Y. A novel calibration method of magnetic compass based on ellipsoid fitting. IEEE Transactions on Instrumentation and Measurement, 2011, 60(6): 2053-2061[18] Fang J C, Gong X L. Predictive iterated Kalman filter for INS/GPS integration and its application to SAR motion compensation. IEEE Transactions on Instrumentation and Measurement, 2010, 59(4): 909-915[19] Quan Wei, Liu Bai-Qi, Gong Xiao-Lin, Fang Jian-Cheng. INS/CNS/GN-SS Integrated Navigation Technology. Beijing: National Defense Industry Press, 2011. 144-161(全伟, 刘百奇, 宫晓琳, 房建成. 惯性/天文/卫星组合导航技术. 北京: 国防工业出版社, 2011. 144-161)
  • 加载中
计量
  • 文章访问数:  2193
  • HTML全文浏览量:  63
  • PDF下载量:  1386
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-11
  • 修回日期:  2012-03-23
  • 刊出日期:  2012-08-20

目录

    /

    返回文章
    返回