2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机间距稀疏 Toeplitz 测量矩阵的压缩传感

张成 杨海蓉 韦穗

张成, 杨海蓉, 韦穗. 基于随机间距稀疏 Toeplitz 测量矩阵的压缩传感. 自动化学报, 2012, 38(8): 1362-1369. doi: 10.3724/SP.J.1004.2012.01362
引用本文: 张成, 杨海蓉, 韦穗. 基于随机间距稀疏 Toeplitz 测量矩阵的压缩传感. 自动化学报, 2012, 38(8): 1362-1369. doi: 10.3724/SP.J.1004.2012.01362
ZHANG Cheng, YANG Hai-Rong, WEI Sui. Compressive Sensing Based on Deterministic Sparse Toeplitz Measurement Matrices with Random Pitch. ACTA AUTOMATICA SINICA, 2012, 38(8): 1362-1369. doi: 10.3724/SP.J.1004.2012.01362
Citation: ZHANG Cheng, YANG Hai-Rong, WEI Sui. Compressive Sensing Based on Deterministic Sparse Toeplitz Measurement Matrices with Random Pitch. ACTA AUTOMATICA SINICA, 2012, 38(8): 1362-1369. doi: 10.3724/SP.J.1004.2012.01362

基于随机间距稀疏 Toeplitz 测量矩阵的压缩传感

doi: 10.3724/SP.J.1004.2012.01362
详细信息
    通讯作者:

    杨海蓉

Compressive Sensing Based on Deterministic Sparse Toeplitz Measurement Matrices with Random Pitch

  • 摘要: 选择合适的测量矩阵是压缩传感理论实用化的关键之一. 本文在Toeplitz矩阵独立元素中随机地引入零元,形成随机间距稀疏Toeplitz矩阵, 使得随机独立变元个数可以减少到原Toeplitz矩阵的1/2~1/16,甚至更少, 非零元个数同样大大减少,有利于数据传输和存储.模拟实验表明随机间距稀疏 Toeplitz矩阵在重建效果优于Gauss矩阵和原Toeplitz矩阵的同时,重建时间只有Gauss矩阵和一般Toeplitz矩阵重建时间的约15%~40%.
  • [1] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306[2] Candés E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509[3] Candés E J, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223[4] Bajwa W U, Haupt J D, Raz G M, Wright S J, Nowak R D. Toeplitz-structured compressed sensing matrices. In: Proceedings of the 14th IEEE/SP Workshop on Statistical Signal Processing. Madison, USA: IEEE, 2007. 294-298[5] Rauhut H. Circulant and Toeplitz matrices in compressed sensing. In: Proceedings of the Signal Processing with Adaptive Sparse Structured Representations. Saint Malo, France: SPARS/INRIA, 2009. 1-7[6] Haupt J, Bajwa W U, Raz G, Nowak R. Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Transactions on Information Theory, 2010, 56(11): 5862-5875[7] DeVore R A. Deterministic constructions of compressed sensing matrices. Journal of Complexity, 2007, 23(4-6): 918-925[8] Calderbank R, Howard S, Jafarpour S. Construction of a large class of deterministic sensing matrices that satisfy a statistical isometry property. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 358-374[9] Wang K, Liu Y L, Zhang J X. RIP analysis for quasi-Toeplitz CS matrices. In: Proceedings of the International Conference on Future Information Technology and Management Engineering. Changzhou, China: IEEE, 2010. 223-226[10] Zhang G S, Jiao S H, Xu X L. Compressed sensing and reconstruction with semi-Hadamard matrices. In: Proceedings of the 2nd International Conference on Signal Processing Systems. Dalian, China: IEEE, 2010. 194-197[11] Yu L, Barbot J P, Zheng G, Sun H. Toeplitz-structured chaotic sensing matrix for compressive sensing. In: Proceedings of the 7th International Symposium on Communication Systems Networks and Digital Signal Processing. Newcastle upon Tyne, UK: IEEE, 2010. 229-233[12] He Z X, Ogawa T, Haseyama M. The simplest measurement matrix for compressed sensing of natural images. In: Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 4301-4304[13] Li X B, Zhao R Z, Hu S H. Blocked polynomial deterministic matrix for compressed sensing. In: Proceedings of the 6th International Conference on Wireless Communications Networking and Mobile Computing. Chengdu, China: IEEE, 2010. 23-25[14] Fang Hong, Zhang Quan-Bing, Wei Sui. Method of image reconstruction based on very sparse random projection. Computer Engineering and Applications, 2007, 43(22): 25-27(方红, 章权兵, 韦穗. 基于非常稀疏随机投影的图像重建方法. 计算机工程与应用, 2007, 43(22): 25-27)[15] Baraniuk R, Davenport M, DeVore R A, Wakin M B. A simple proof of the restricted isometry property for random matrices. Constructive Approximation, 2008, 28(3): 253-263[16] Hajnal A, Szemeredi E. Proof of a conjecture of P. Erdos. Combinatorial Theory and Its Application. Amsterdam: North-Holland, 1970. 601-623[17] Li Shu-Tao, Wei Dan. A survey on compressive sensing. Acta Automatica Sinica, 2009, 35(11): 1369-1377(李树涛, 魏丹. 压缩传感综述. 自动化学报, 2009, 35(11): 1369-1377)[18] Yang Hai-Rong, Fang Hong, Zhang Cheng, Wei Sui. Iterative hard thresholding algorithm based on backtracking. Acta Automatica Sinica, 2011, 37(3): 276-282(杨海蓉, 方红, 张成, 韦穗. 基于回溯的迭代硬阈值算法. 自动化学报, 2011, 37(3): 276-282)[19] Lian Qiu-Sheng, Chen Shu-Zhen. Image reconstruction for compressed sensing based on the combined sparse image representation. Acta Automatica Sinica, 2010, 36(3): 385-391(练秋生, 陈书贞. 基于混合基稀疏图像表示的压缩传感图像重构. 自动化学报, 2010, 36(3): 385-391)[20] Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249
  • 加载中
计量
  • 文章访问数:  2608
  • HTML全文浏览量:  59
  • PDF下载量:  1330
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-23
  • 修回日期:  2011-08-12
  • 刊出日期:  2012-08-20

目录

    /

    返回文章
    返回