2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模仿学习:一种新人工生命动画方法

班晓娟 徐卓然 刘浩

班晓娟, 徐卓然, 刘浩. 模仿学习:一种新人工生命动画方法. 自动化学报, 2012, 38(4): 518-524. doi: 10.3724/SP.J.1004.2012.00518
引用本文: 班晓娟, 徐卓然, 刘浩. 模仿学习:一种新人工生命动画方法. 自动化学报, 2012, 38(4): 518-524. doi: 10.3724/SP.J.1004.2012.00518
BAN Xiao-Juan, XU Zhuo-Ran, LIU Hao. Imitation Learning: A New Approach in Artificial Life Animation. ACTA AUTOMATICA SINICA, 2012, 38(4): 518-524. doi: 10.3724/SP.J.1004.2012.00518
Citation: BAN Xiao-Juan, XU Zhuo-Ran, LIU Hao. Imitation Learning: A New Approach in Artificial Life Animation. ACTA AUTOMATICA SINICA, 2012, 38(4): 518-524. doi: 10.3724/SP.J.1004.2012.00518

模仿学习:一种新人工生命动画方法

doi: 10.3724/SP.J.1004.2012.00518
详细信息
    通讯作者:

    徐卓然 北京科技大学计算机科学与技术系硕士研究生. 主要研究方向为人工智能和神经网络. E-mail: xuzhuoran0106@gmail.com

Imitation Learning: A New Approach in Artificial Life Animation

  • 摘要: 提出一种新的人工生命动画方法—模仿学习. 模仿是一种非常有效的掌握运动技能的学习方式. 一项运动技能为无数个相关运动序列的集合. 通过模仿代表性运动序列,将蕴含的局部运动技能泛化,可获得完整的运动技能. 模仿学习以运动相似度匹配和简单--复杂行为方法论为核心,并以进化计算为优化方法. 模仿学习降低进化计算对传统评价函数的依赖,减少评价函数设计时间,提高优化复杂目标的能力,因此提高了制作效率. 基于PhysX仿真平台,本文以人工猫的着陆行为验证了本文方法的有效性,并取得了良好的效果.
  • [1] Tu X, Terzopoulos D. Artificial fishes: physics, locomotion, perception, behavior. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques. Orlando, USA: ACM, 1994. 43-50[2] Wu J C, Popovic Z. Realistic modeling of bird flight animations. ACM Transactions on Graphics, 2003, 22(3): 888-895[3] Liu C K, Hertzmann A, Popovic Z. Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics, 2005, 24(3): 1071-1081[4] Sims K. Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques. Orlando, USA: ACM, 1994. 15-22[5] Sims K. Evolving 3D morphology and behavior by competition. Artificial Life, 1994, 1(4): 353-372[6] Tanev I, Ray T, Buller A. Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot. IEEE Transactions on Robotics, 2005, 21(4): 632-645[7] Secretan J, Beato N, D'Ambrosio D B, Rodriguez A, Campbell A, Folsom-Kovarik J T, Stanley K O. Picbreeder: a case study in collaborative evolutionary exploration of design space. Evolutionary Computation, 2011, 19(3): 373-403[8] Marriott C, Parker J, Denzinger J. Imitation as a mechanism of cultural transmission. Artificial Life, 2010, 16(1): 21-37[9] Pullen K, Bregler C. Motion capture assisted animation: texturing and synthesis. ACM Transactions on Graphics, 2002, 21(3): 501-508[10] Liu F, Zhuang Y, Wu F, Pan Y. 3D motion retrieval with motion index tree. Computer Vision and Image Understanding, 2003, 92(2-3): 265-284[11] Lee J, Chai J, Reitsma P S A, Hodgins J, Pollard N S. Interactive control of avatars animated with human motion data. ACM Transactions on Graphics, 2002, 21(3): 491-500[12] Jolliffe I T. Principle Component Analysis. New York: Spring, 1986[13] Guttman A. R-trees: a dynamic index structure for spatial searching. ACM SIGMOD Record, 1984, 14(2): 47-57[14] Mukai N, Watanabe T, Jun F. R-tree based optimization algorithm for dynamic transport problem. Lecture Notes in Computer Science. 2006, 4252: 1095-1102[15] Li C, Pradhan G, Zheng S, Prabhakaran B. Indexing of variable length multi-attribute motion data. In: Proceedings of the 2nd ACM International Workshop on Multimedia Databases. Washington D. C., USA: ACM, 2004. 75-84[16] Kahveci T, Singh A, Gurel A. Similarity searching for multi-attribute sequences. In: Proceedings of the 14th International Conference on Scientific and Statistical Database Management. Edinburgh, UK: IEEE, 2002. 175-184[17] Lee S L, Chun S J, Kim D H, Lee J H, Chung C W. Similarity search for multidimensional data sequences. In: Proceedings of the 16th International Conference on Data Engineering. San Diego, USA: IEEE, 2000. 599-608[18] Gomez F, Schmidhuber J, Miikkulainen R. Accelerated neural evolution through cooperatively coevolved synapses. Journal of Machine Learning Research, 2009, 9: 937-965[19] Stanley K O, Miikkulainen R. Evolving neural networks through augmenting topologies. Evolutionary Computation, 2002, 10(2): 99-127[20] Dürr P, Mattiussi C, Floreano D. Neuroevolution with analog genetic encoding. Lecture Notes in Computer Science, 2006, 4193: 671-680
  • 加载中
计量
  • 文章访问数:  2232
  • HTML全文浏览量:  67
  • PDF下载量:  1284
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-18
  • 修回日期:  2011-11-10
  • 刊出日期:  2012-04-20

目录

    /

    返回文章
    返回