[1]
|
Cost O L V, Fragoso M D, Marques R P. Discrete-Time Markov Jump Linear Systems. London: Springer, 2005. 65-83[2] Zhang L X. H∞ estimation for discrete-time piecewise homogeneous Markov jump linear systems. Automatica, 2009, 45(11): 2570-2576[3] Liu H P, Ho D W C, Sun F C. Design of H∞ filter for Markov jumping linear systems with non-accessible mode information. Automatica, 2008, 44(10): 2665-2660[4] Cinquemani E, Micheli M. State estimation in stochastic hybrid systems with sparse observations. IEEE Transactions on Automatic Control, 2006, 51(8): 1337-1342[5] Seah C E, Hwang I. State estimation for stochastic linear hybrid systems with continuous-state-dependent transitions: an IMM approach. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(1): 376-391[6] Tsantas N. Stochastic analysis of a non-homogeneous Markov system. European Journal of Operational Research, 1995, 85(3): 670-685[7] Dey S, Moore J B. Risk-sensitive filtering and smoothing via reference probability methods. IEEE Transactions on Automatic Control, 1997, 42(11): 1587-1591[8] Shao X G, Huang B, Lee J M. Constrained Bayesian estimation —— a comparative study and a new particle filter based approach. Journal of Process Control, 2010, 20(2): 143-157[9] Zhao Ling-Ling, Ma Pei-Jun, Su Xiao-Hong. A fast quasi-Monte Carlo-based particle filter algorithm. Acta Automatica Sinica, 2010, 36(9): 1351-1356(赵玲玲, 马培军, 苏小红. 一种快速准蒙特卡罗粒子滤波算法. 自动化学报, 2010, 36(9): 1351-1356)[10] Aggoun L, Benkherouf L. Filtering of discrete-time systems hidden in discrete-time random measure. Mathematical and Computer Modelling, 2002, 35(3): 273-282[11] Orguner U, Demirekler M. Maximum likelihood estimation of transition probabilities of jump Markov linear systems. IEEE Transactions on Signal Processing, 2008, 56(10): 5093-5108[12] Luan X, Liu F, Shi P. Finite-time filtering for non-linear stochastic systems with partially known transition jump rates. IET Control Theory and Applications, 2010, 4(5): 735-745
|