2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性非齐次Markov跳变系统的贝叶斯滤波

赵顺毅 刘飞

赵顺毅, 刘飞. 非线性非齐次Markov跳变系统的贝叶斯滤波. 自动化学报, 2012, 38(3): 485-490. doi: 10.3724/SP.J.1004.2012.00485
引用本文: 赵顺毅, 刘飞. 非线性非齐次Markov跳变系统的贝叶斯滤波. 自动化学报, 2012, 38(3): 485-490. doi: 10.3724/SP.J.1004.2012.00485
ZHAO Shun-Yi, LIU Fei. Bayesian Filtering for Non-linear Markov Jump Systems with Non-homogeneous Transition Probabilities. ACTA AUTOMATICA SINICA, 2012, 38(3): 485-490. doi: 10.3724/SP.J.1004.2012.00485
Citation: ZHAO Shun-Yi, LIU Fei. Bayesian Filtering for Non-linear Markov Jump Systems with Non-homogeneous Transition Probabilities. ACTA AUTOMATICA SINICA, 2012, 38(3): 485-490. doi: 10.3724/SP.J.1004.2012.00485

非线性非齐次Markov跳变系统的贝叶斯滤波

doi: 10.3724/SP.J.1004.2012.00485
详细信息
    通讯作者:

    赵顺毅, 江南大学自动化研究所博士研究生.主要研究方向为复杂系统的滤波及控制. E-mail: shunyizhao@126.com

Bayesian Filtering for Non-linear Markov Jump Systems with Non-homogeneous Transition Probabilities

  • 摘要: 针对具有时变不确定转移概率的非线性非齐次Markov跳变系统, 提出一种贝叶斯状态估计方法.该方法首次采用带约束高斯概率密度函数来刻画转移概率的真实特性. 然后,基于参考概率空间法, 将实际的概率测度投影到理想概率空间, 得出信息变量的递归表达式. 同时, 在贝叶斯框架内给出转移概率矩阵的最大后验估计式. 进一步, 采用粒子逼近法求解转移概率矩阵的最大后验估计, 解决非线性函数的多重积分问题, 进而获取状态估计值. 最后, 通过一个仿真示例表明该方法的有效性.
  • [1] Cost O L V, Fragoso M D, Marques R P. Discrete-Time Markov Jump Linear Systems. London: Springer, 2005. 65-83[2] Zhang L X. H∞ estimation for discrete-time piecewise homogeneous Markov jump linear systems. Automatica, 2009, 45(11): 2570-2576[3] Liu H P, Ho D W C, Sun F C. Design of H∞ filter for Markov jumping linear systems with non-accessible mode information. Automatica, 2008, 44(10): 2665-2660[4] Cinquemani E, Micheli M. State estimation in stochastic hybrid systems with sparse observations. IEEE Transactions on Automatic Control, 2006, 51(8): 1337-1342[5] Seah C E, Hwang I. State estimation for stochastic linear hybrid systems with continuous-state-dependent transitions: an IMM approach. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(1): 376-391[6] Tsantas N. Stochastic analysis of a non-homogeneous Markov system. European Journal of Operational Research, 1995, 85(3): 670-685[7] Dey S, Moore J B. Risk-sensitive filtering and smoothing via reference probability methods. IEEE Transactions on Automatic Control, 1997, 42(11): 1587-1591[8] Shao X G, Huang B, Lee J M. Constrained Bayesian estimation —— a comparative study and a new particle filter based approach. Journal of Process Control, 2010, 20(2): 143-157[9] Zhao Ling-Ling, Ma Pei-Jun, Su Xiao-Hong. A fast quasi-Monte Carlo-based particle filter algorithm. Acta Automatica Sinica, 2010, 36(9): 1351-1356(赵玲玲, 马培军, 苏小红. 一种快速准蒙特卡罗粒子滤波算法. 自动化学报, 2010, 36(9): 1351-1356)[10] Aggoun L, Benkherouf L. Filtering of discrete-time systems hidden in discrete-time random measure. Mathematical and Computer Modelling, 2002, 35(3): 273-282[11] Orguner U, Demirekler M. Maximum likelihood estimation of transition probabilities of jump Markov linear systems. IEEE Transactions on Signal Processing, 2008, 56(10): 5093-5108[12] Luan X, Liu F, Shi P. Finite-time filtering for non-linear stochastic systems with partially known transition jump rates. IET Control Theory and Applications, 2010, 4(5): 735-745
  • 加载中
计量
  • 文章访问数:  2723
  • HTML全文浏览量:  61
  • PDF下载量:  1049
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-20
  • 修回日期:  2011-12-02
  • 刊出日期:  2012-03-20

目录

    /

    返回文章
    返回