2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

去除乘性噪声的重加权各向异性全变差模型

王旭东 冯象初 霍雷刚

王旭东, 冯象初, 霍雷刚. 去除乘性噪声的重加权各向异性全变差模型. 自动化学报, 2012, 38(3): 444-451. doi: 10.3724/SP.J.1004.2012.00444
引用本文: 王旭东, 冯象初, 霍雷刚. 去除乘性噪声的重加权各向异性全变差模型. 自动化学报, 2012, 38(3): 444-451. doi: 10.3724/SP.J.1004.2012.00444
WANG Xu-Dong, FENG Xiang-Chu, HUO Lei-Gang. Iteratively Reweighted Anisotropic-TV Based Multiplicative Noise Removal Model. ACTA AUTOMATICA SINICA, 2012, 38(3): 444-451. doi: 10.3724/SP.J.1004.2012.00444
Citation: WANG Xu-Dong, FENG Xiang-Chu, HUO Lei-Gang. Iteratively Reweighted Anisotropic-TV Based Multiplicative Noise Removal Model. ACTA AUTOMATICA SINICA, 2012, 38(3): 444-451. doi: 10.3724/SP.J.1004.2012.00444

去除乘性噪声的重加权各向异性全变差模型

doi: 10.3724/SP.J.1004.2012.00444
详细信息
    通讯作者:

    王旭东, 西安电子科技大学理学院应用数学系博士研究生. 主要研究方向为 图像处理的偏微分方程方法.E-mail: xudwang@mail.xidian.edu.cn

Iteratively Reweighted Anisotropic-TV Based Multiplicative Noise Removal Model

  • 摘要: 恢复含乘性噪声的图像是当前图像处理的重要研究课题. 本文提出基于迭代重加权的各向异性全变差(Total variation, TV)模型. 新模型中, 假定乘性噪声服从Gamma分布. 正则项采用加权的各向异性全变差, 其中, 自适应权函数由期望最大(Expectation maximization, EM)算法得到. 新模型在有效去噪的同时, 较好地保留了图像的边缘和细节信息, 同时能够有效地抑制"阶梯效应". 数值实验验证了新模型的效果.
  • [1] Huo Chun-Lei, Cheng Jian, Lu Han-Qing, Zhou Zhi-Xin. Object-level change detection based on multiscale fusion. Acta Automatica Sinica, 2008, 34(3): 251-257(霍春雷, 程健, 卢汉清, 周志鑫. 基于多尺度融合的对象级变化检测新方法. 自动化学报, 2008, 34(3): 251-257)[2] Wu Liang, Hu Yun-An. A survey of automatic road extraction from remote sensing images. Acta Automatica Sinica, 2010, 36(7): 912-922(吴亮, 胡云安. 遥感图像自动道路提取方法综述. 自动化学报, 2010, 36(7): 912-922)[3] Aubert G, Aujol J. A nonconvex model to remove multiplicative noise. In: Proceedings of the 1st International Conference on Scale Space and Variational Methods in Computer Vision. Ischia, Italy: Springer, 2007. 68-79[4] Aubert G, Aujol J. A variational approach to removing multiplicative noise. SIAM Journal on Applied Mathematics, 2008, 68(4): 925-946[5] Jin Z M, Yang X P. Analysis of a new variation model for multiplicative noise removal. Journal of Mathematical Analysis and Applications, 2010, 362(2): 415-426[6] Huang Y M, Ng M K, Wen Y W. A new total variation method for multiplicative noise removal. SIAM Journal on Imaging Sciences, 2009, 2(1): 20-40[7] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992, 60(1-4): 259-268[8] Feng Xiang-Chu, Wang Wei-Wei. Variaitional and Partial Differential Equation Method in Image Processing. Beijing: Science Press, 2009(冯象初, 王卫卫. 图像处理的变分和偏微分方程方法. 北京: 科学出版社, 2009)[9] Rudin L, Lions P L, Osher S. Multiplicative denoising and deblurring: theory and algorithms. Geometric Level Set Methods in Imaging, Vision and Graphics. New York: Springer, 2003. 103-119[10] Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-741[11] Li Y Y, Santosa F. A computational algorithm for minimizing total variation in image restoration. IEEE Transactions on Image Processing, 1996, 5(6): 987-995[12] Lin Y Q, Lee D D. Bayesian L1-norm sparse learning. In: International Conference on Acoustics, Speech, and Signal Processing. Toulouse, France: IEEE, 2006. 605-608[13] Nikolova M. Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Modelling and Simulation, 2005, 4(3): 960-991[14] Nikolova M, Ng M K, Zhang S, Ching W. Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM Journal on Image Science, 2008, 1(1): 2-25[15] Nikolova M, Ng M K, Tam C P. Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. IEEE Transactions on Image Processing, 2010, 19(12): 3073-3088[16] Han Yu, Wang Wei-Wei, Feng Xiang-Chu. Iteratively reweighted method based nonrigid image registration. Acta Automatica Sinica, 2011, 37(9): 1059-1066(韩雨, 王卫卫, 冯象初. 基于迭代重加权的非刚性图像配准. 自动化学报, 2011, 37(9): 1059-1066)[17] Rodriguez P, Wohlberg B. An iteratively reweighted norm algorithm for total variation regularization. In: Proceedings of the 40th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA: IEEE, 2006. 892-896[18] Wohlberg B, Rodriguez P. An iteratively reweighted norm algorithm for minimization of total variation functionals. IEEE Signal Processing Letters, 2007, 14(12): 948-951[19] Candes E J, Wakin M, Boyd S P. Enhancing sparsity by reweighted L1 minimization. Journal of Fourier Analysis and Applications, 2008, 14(5): 877-905[20] Daubechies I, DeVore R, Fornasier M, Gunturk C S. Iteratively reweighted least squares minimization for sparse recovery. Communications on Pure and Applied Mathematics, 2010, 63(1): 1-38[21] Foucart S, Lai M J. Sparsest solutions of underdetermined linear systems via L_{q}-minimization for 0 q ≤ 1. Applied and Computational Harmonic Analysis, 2009, 26(3): 395-407[22] Wipf D, Nagarajan S. Iterative reweighted L1 and L2 methods for finding sparse solutions. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 317-329
  • 加载中
计量
  • 文章访问数:  2221
  • HTML全文浏览量:  54
  • PDF下载量:  1328
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-04
  • 修回日期:  2011-10-08
  • 刊出日期:  2012-03-20

目录

    /

    返回文章
    返回