[1]
|
Montera D A, Rogers S K, Ruck D W, Oxley M E. Object tracking through adaptive correlation. Optical Engineering, 1994, 33(1): 294-302[2] Harry H S, Marshall A D, Markham K C. Tracking targets in FLIR images by region template correlation. In: Proceedings of the Acquisition, Tracking, and Pointing. Orlando, USA: SPIE, 1997. 221-232[3] Shi J, Tomasi C. Good features to track. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 1994. 593-600[4] Chien S, Sun S. Adaptive window method with sizing vectors for reliable correlation-based target tracking. Pattern Recognition, 2000, 33(2): 237-249[5] Hager G D, Belhumeur P N. Efficient region tracking with parametric models of geometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(10): 1025-1039[6] Jurie F, Dhome M. Hyperplane approximation for template matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 996-1000[7] Baker S, Matthews I. Lucas-Kanade 20 years on: a unifying framework. International Journal on Computer Vision, 2004, 56(3): 221-255[8] Buenaposada J M, Baumela L. Real-time tracking and estimation of plane pose. In: Proceedings of the 16th International Conference on Pattern Recognition. Quebec, Canada: IEEE, 2002. 697-700[9] Zhu G P, Zeng Q S, Wang C H. Efficient edge-based object tracking. Pattern Recognition, 2006, 39(11): 2223-2226[10] Schreiber D. Robust template tracking with drift correction. Pattern Recognition Letters, 2007, 28(12): 1483-1491[11] Li Hong-You, Wang Tong-Qing, Ye Jun-Yong. Tracking moving target using drift correction algorithm. Acta Automatica Sinica, 2009, 35(3): 310-314(李宏友, 汪同庆, 叶俊勇. 基于主动漂移矫正的运动目标跟踪算法. 自动化学报, 2009, 35(3): 310-314)[12] Tsao T, Wen Z Q. Image-based target tracking through rapid sensor orientation change. Optical Engineering, 2002, 41(3): 697-703[13] Tsao T R, Wen J Z. Rapid target tracking algorithm using Gabor representation of target signature and Lie derivatives. In: Proceedings of the Acquisition, Tracking, and Pointing. Bellingham, USA: SPIE, 2001. 93-101[14] Mann S, Picard R W. Video orbits of the projective group: a simple approach to featureless estimation of parameters. IEEE Transactions on Image Processing, 1997, 6(9): 1281-1295[15] Drummond T, Cipolla R. Application of Lie algebras to visual servoing. International Journal on Computer Vision, 2000, 37(1): 21-41[16] Benhimane S, Malis E. Homography-based 2D visual tracking and servoing. International Journal of Robotics Research, 2007, 26(7): 661-676[17] Taylor C J, Kriegman D J. Minimization on the Lie Group SO(3) and Related Manifolds, Technical Report No.9405, Yale University,USA, 1994[18] Bayro-Corrochano E, Ortegon-Aguilar J. Lie algebra template tracking. In: Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE, 2004. 56-59[19] Bayro-Corrochano E, Ortegon-Aguilar J. Lie algebra approach for tracking and 3D motion estimation using monocular vision. Image and Vision Computing, 2007, 25(6): 907-921[20] Tuzel O, Porikli F, Meer P. Learning on Lie groups for invariant detection and tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8[21] Mégret R, Authesserre J, Berthoumieu Y. Bidirectional composition on Lie groups for gradient-based image alignment. IEEE Transactions on Image Processing, 2010, 19(9): 2369-2381[22] Ying Shi-Hui, Peng Ji-Gen, Zheng Kai-Jie, Qiao-Hong. Lie group method for data set registration problem with anisotropic scale deformation. Acta Automatica Sinica, 2009, 35(7): 867-874(应时辉, 彭济根, 郑开杰, 乔红. 含各向异性尺度形变数据集匹配问题的Lie群方法. 自动化学报, 2009, 35(7): 867-874)[23] Liu Yun-Peng, Li Guang-Wei, Shi Ze-Lin. Projective registration algorithm based on Riemannian manifold. Acta Automatica Sinica, 2009, 35(11): 1378-1386(刘云鹏, 李广伟, 史泽林. 基于黎曼流形的图像投影配准算法. 自动化学报, 2009, 35(11): 1378-1386)[24] Hall B C. Lie Groups, Lie Algebras, and Representations: an Elementary Introduction. New York: Springer, 2003[25] Porat M, Zeevi Y Y. The generalized Gabor scheme of image representation in biological and machine vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(4): 452-468[26] Wu X, Bhanu B. Gabor wavelet representation for 3-D objects recognition. IEEE Transactions on Image Processing, 1997, 6(1): 47-64[27] Li Qing-Yang, Wang Neng-Chao, Yi Da-Yi. Numerical Analysis. Beijing: Tsinghua University Press, 2001. 64-81(李庆扬, 王能超, 易大义. 数值分析. 北京: 清华大学出版社, 2001. 64-81)
|