2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于超声斑点噪声滤波的各向异性扩散新模型

李灿飞 王耀南 肖昌炎 卢笑

李灿飞, 王耀南, 肖昌炎, 卢笑. 用于超声斑点噪声滤波的各向异性扩散新模型. 自动化学报, 2012, 38(3): 412-419. doi: 10.3724/SP.J.1004.2012.00412
引用本文: 李灿飞, 王耀南, 肖昌炎, 卢笑. 用于超声斑点噪声滤波的各向异性扩散新模型. 自动化学报, 2012, 38(3): 412-419. doi: 10.3724/SP.J.1004.2012.00412
LI Can-Fei, WANG Yao-Nan, XIAO Chang-Yan, LU Xiao. A New Speckle Reducing Anisotropic Diffusion for Ultrasonic Speckle. ACTA AUTOMATICA SINICA, 2012, 38(3): 412-419. doi: 10.3724/SP.J.1004.2012.00412
Citation: LI Can-Fei, WANG Yao-Nan, XIAO Chang-Yan, LU Xiao. A New Speckle Reducing Anisotropic Diffusion for Ultrasonic Speckle. ACTA AUTOMATICA SINICA, 2012, 38(3): 412-419. doi: 10.3724/SP.J.1004.2012.00412

用于超声斑点噪声滤波的各向异性扩散新模型

doi: 10.3724/SP.J.1004.2012.00412
详细信息
    通讯作者:

    李灿飞, 湖南大学电气与信息工程学院博士研究生. 2001年与2005年分别获得湖南大学电气与信息工程学院学士学位与硕士学位. 主要研究方向为图像识别,计算机视觉,以及医学图像处理. E-mail: olivia.c@163.com

A New Speckle Reducing Anisotropic Diffusion for Ultrasonic Speckle

  • 摘要: 由于扩散系数的缺点,原斑点噪声各向异性扩散模型(Speckle reducing anisotropic diffusion, SRAD)有产生板块效应、模糊弱边界与细节等缺点. 本文通过改进扩散系数,提出一种新的斑点噪声各项异性扩散模型(New speckle reducing anisotropic diffuse, NSRAD), NSRAD中采用一个S型函数作为扩散系数:在同质区域中,采用各向同性扩散, 避免了板块效应; 在结构性区域中,扩散速度变化敏感,同时以更快趋向于0的速度扩散,因此,提高了该区域的分辨率,达到增强细节和弱边界以及保留边界的锐利性的目的. 仿真图像的定量分析证明新方法不仅比原SRAD除噪更有效,而且提高了除噪后图像与原图像的结构相似性,同时具有更小形变. 真实图像的试验结果也证明新方法在有效除噪的同时消除了黑板刷效应,增强了边界以及细节.
  • [1] Lamont D, Parker L, White M, Unwin N, Bennett S M A, Cohen M, Dickinson H O, Adamson A, Alberti K G M M, Craft A W. Risk of cardiovascular disease measured by carotid intima-media thickness at age 49-51: life course study. British Medical Journal, 2000, 320(7230): 273-278[2] Lee J S. Speckle analysis and smoothing of synthetic aperture radar images. Computer Graphics and Image Processing, 1981, 17(1): 24-32[3] Lee J S. Digital image enhancement and noise filtering by using local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2(2): 165-168[4] Lee J S. Refined filtering of image noise using local statistics. Computer Graphics and Image Processing, 1981, 15(4): 380-389[5] Frost V S, Stiles J A, Shanmuggam K S, Holtzman J C. A model for radar images and its application for adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, 4(2): 157-165[6] Kuan D T, Sawchuk A A, Strand T C, Chavel P. Adaptive restoration of images with speckle. IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, 35(3): 373-383[7] Kuan D T, Sawchuk A A, Strand T C, Chavel P. Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, 7(2): 165-177[8] Wang Yi, Niu Riu-Qing, Yu Xin, Shen Huan-Feng. Time dependent robust anisotropic diffusion processes. Acta Automatica Sinica, 2009, 35(9): 1253-1256(王毅, 牛瑞卿, 喻鑫, 沈焕峰. 基于时间变化的鲁棒各向异性扩散模型. 自动化学报, 2009, 35(9): 1253-1256)[9] Jin J S, Wang Y, Hiller J. An adaptive nonlinear diffusion algorithm for filtering medical images. IEEE Transactions on Information Technology in Biomedicine, 2000, 4(4): 298-305[10] Meng Xiang-Lin, Wang Zheng-Zhi. Image diffusion based on visual masking effect. Acta Automatica Sinica, 2011, 37(1): 21-27(孟祥林, 王正志. 基于视觉掩蔽效应的图像扩散. 自动化学报, 2011, 37(1): 21-27)[11] Ying Shi-Hui, Peng Ji-Gen, Zheng Kai-Jie, Qiao Hong. Lie group method for data set registration problem with anisotropic scale deformation. Acta Automatica Sinica, 2009, 35(7): 868-874(应时辉, 彭济根, 郑开杰, 乔红. 含各向异性尺度形变数据集匹配问题的Lie群方法. 自动化学报, 2009, 35(7): 868-874)[12] Black M J, Sapiro G, Marimont D H, Heeger D. Robust anisotropic diffusion. IEEE Transactions on Image Processing, 1998, 7(3): 421-432[13] Rerona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639[14] Yu Y, Acton S T. Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing, 2002, 11(11): 1260-1270[15] Abd-Elmoniem K, Youssef A B M, Kadah Y M. Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Transactions on Biomedical Engineering, 2002, 49(9): 997-1014[16] Aja-Fernandez S, Alberola-Lopez C. On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Transactions on Image Processing, 2006, 15(9): 2694-2701[17] Krissian K, Westin C F, Kikinis R, Vosburgh K G. Oriented speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing, 2007, 16(5): 1412-1424[18] Jain A K. Fundamentals of Digital Image Processing. New Jersey: Prentice-Hall, 1989[19] Aja-Fernandez S, Vegas-Sanchez-Ferrero G, Martin-Fernandez M, Alberola-Lopez C. Automatic noise estimation in images using local statistics: additive and multiplicative cases. Image and Vision Computing, 2009, 27(6): 756-770[21] Wang Z, Bovik A C. A universal image quality index. IEEE Signal Processing Letters, 2002, 9(3): 81-84[20] Sakrison D. On the role of observer and a distortion measure in image transmission. IEEE Transactions on Communications, 1977, 25(11): 1251-1267[22] Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612
  • 加载中
计量
  • 文章访问数:  2562
  • HTML全文浏览量:  48
  • PDF下载量:  1128
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-28
  • 修回日期:  2011-09-27
  • 刊出日期:  2012-03-20

目录

    /

    返回文章
    返回