[1]
|
Hu Chang-Hua, Xu Hua-Long. Design and Analysis of Fault-Tolerant Control and Fault Diagnosis for Control System. Beijing: National Defense Industry Press, 2000(胡昌华, 许化龙. 控制系统故障诊断与容错控制的分析和设计. 北京: 国防工业出版社, 2000)[2] Si X S, Wang W, Hu C H, Zhou D H. Remaining useful life estimation —— a review on the statistical data driven approaches. European Journal of Operational Research, 2011, 213(1): 1-14[3] Gebraeel N Z, Lawley M A, Liu R, Parmeshwaran V. Residual life predictions from vibration-based degradation signals: a neural network approach. IEEE Transactions on Industrial Electronics, 2004, 51(3): 694-700[4] Lu J C, Meeker W Q. Using degradation measures to estimate a time-to-failure distribution. Technometrics, 1993, 35(2): 161-174[5] Chan V. Degradation-Based Reliability in Outdoor Environments [Ph.D. dissertation], Iowa State University, USA, 2001[6] Lim K E, Baek J S, Lee E Y. A random shock model for a continuously deteriorating system. Journal of Quality in Maintenance Engineering, 2005, 11(3): 206-215[7] Ramakrishnan A, Pecht M. A life consumption monitoring methodology for electronic systems. IEEE Transactions on Components and Packaging Technologies, 2003, 26(3): 625-634[8] Son K I, Soma M. Dynamic life-estimation of CMOS ICs in real operating environment: precise electrical method and MLE. IEEE Transactions on Reliability, 1997, 46(1): 31-37[9] Lv Ke-Hong, Qiu Jing, Liu Guan-Jun. Research on life prognosis method for electronics based on dynamic damage and optimization AR model. Acta Armamentarii, 2009, 30(1): 91-95(吕克洪, 邱静, 刘冠军. 基于动态损伤及优化AR模型的电子器件寿命预测方法研究. 兵工学报, 2009, 30(1): 91-95)[10] Wu S J, Tsai T R. Estimation of time-to-failure distribution derived from a degradation model using fuzzy clustering. Quality and Reliability Engineering International, 2000, 16(4): 261-267[11] Chinnam R B. On-line reliability estimation for individual components using statistical degradation signal models. Quality and Reliability Engineering International, 2002, 18(1): 53-73[12] Gebraeel N Z, Lawley M A, Li R, Ryan J K. Residual-life distributions from component degradation signals: a Bayesian approach. IIE Transactions, 2005, 37(6): 543-557[13] Gebraeel N Z. Sensory-updated residual life distributions for components with exponential degradation patterns. IEEE Transactions on Automation Science and Engineering, 2006, 3(4): 382-393[14] Gebraeel N Z, Elwany A, Pan J. Residual life predictions in the absence of prior degradation knowledge. IEEE Transactions on Reliability, 2009, 58(1): 106-117[15] Chen Z H, Zheng S R. Lifetime distribution based degradation analysis. IEEE Transactions on Reliability, 2005, 54(1): 3-10[16] Deng Ai-Min, Chen Xun, Zhang Chun-Hua, Wang Ya-Shun. Reliability assessment based on performance degradation data. Journal of Astronautics, 2006, 27(3): 546-552(邓爱民, 陈循, 张春华, 汪亚顺. 基于性能退化数据的可靠性评估. 宇航学报, 2006, 27(3): 546-552)[17] Zhuang Dong-Chen. Degradation Failure Model and Statistical Analysis [Ph.D. dissertation], East China Normal University, China, 1994(庄东辰. 退化失效模型及其统计分析 [博士学位论文], 华东师范大学, 中国, 1994)[18] Xu Z G, Zhou D H. A degradation measurements based real-time reliability prediction method. In: Proceedings of the 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. Beijing, China: IFAC, 2006. 950-955[19] Lu S, Lu H, Kolarik W J. Multivariate performance reliability prediction in real-time. Reliability Engineering and System Safety, 2001, 72(1): 39-45[20] You Qi, Zhao Yu, Ma Xiao-Bing. Performance reliability assessment for products based on time series analysis. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(5): 644-648(尤琦, 赵宇, 马小兵. 产品性能可靠性评估的时序分析方法. 北京航空航天大学学报, 2009, 35(5): 644-648)[21] Xu Z G, Ji Y D, Zhou D H. Real-time reliability prediction for a dynamic system based on the hidden degradation process identification. IEEE Transactions on Reliability, 2008, 57(2): 230-242[22] Huang R Q, Xi L F, Li X L, Liu C R, Qiu H, Lee J. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods. Mechanical Systems and Signal Processing, 2007, 21(1): 193-207[23] Gebraeel N Z, Lawley M A. A neural network degradation model for computing and updating residual life distributions. IEEE Transactions on Automation Science and Engineering, 2008, 5(1): 154-163[24] Hu Chang-Hua, Hu Jin-Tao, Zhang Wei, Ping Zhen-Hai. Reliability assessment of performance degradation using support vector machines. Systems Engineering and Electronics, 2009, 31(5): 1246-1249(胡昌华, 胡锦涛, 张伟, 平振海. 支持向量机用于性能退化的可靠性评估. 系统工程与电子技术, 2009, 31(5): 1246-1249)[25] Wu J, Deng C, Shao X Y, Xie S Q. A reliability assessment method based on support vector machines for CNC equipment. Science in China Series E: Technological Sciences, 2009, 52(7): 1849-1857[26] Li Chang-You, Xu Min-Qiang, Guo Song, Wang Ri-Xin, Gao Jing-Bo. Real-time reliability assessment based on gamma process and Bayesian estimation. Journal of Astronautics, 2009, 30(4): 1715-1719(李常有, 徐敏强, 郭耸, 王日新, 高晶波. 基于Gamma过程及贝叶斯估计的实时可靠性评估. 宇航学报, 2009, 30(4): 1715-1719)[27] Zhao Zhao, Dong Dou-Dou, Zhou Jing-Lun, Feng Jing. Real-time reliability evaluation for degradation failure product based on Bayes method. Journal of National University of Defense Technology, 2007, 29(6): 116-120(赵炤, 董豆豆, 周经伦, 冯静. 基于贝叶斯方法的退化失效型产品实时可靠性评估. 国防科技大学学报, 2007, 29(6): 116-120)[28] Deng Nai-Yang, Tian Ying-Jie. A New Method of Data Mining: Support Vector Machine. Beijing: Science Press, 2004(邓乃杨, 田英杰. 数据挖掘中的新方法: 支持向量机. 北京: 科学出版社, 2004)[29] Zhang Li, Zhou Wei-Da, Jiao Li-Cheng. Wavelet kernel function network. Journal of Infrared Millimeter Waves, 2001, 20(3): 223-227(张莉, 周伟达, 焦李成. 子波核函数网络. 红外与毫米波学报, 2001, 20(3): 223-227)[30] Gao Xin-Bo. Fuzzy Cluster Analysis and Its Applications. Xi'an: Xi'an University of Electronic Science and Technology Press, 2004(高新波. 模糊聚类分析及其应用. 西安: 西安电子科技大学出版社, 2004)
|