2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Grassmann流形的仿射不变形状识别

刘云鹏 李广伟 史泽林

刘云鹏, 李广伟, 史泽林. 基于Grassmann流形的仿射不变形状识别. 自动化学报, 2012, 38(2): 248-258. doi: 10.3724/SP.J.1004.2012.00248
引用本文: 刘云鹏, 李广伟, 史泽林. 基于Grassmann流形的仿射不变形状识别. 自动化学报, 2012, 38(2): 248-258. doi: 10.3724/SP.J.1004.2012.00248
LIU Yun-Peng, LI Guang-Wei, SHI Ze-Lin. Affine-invariant Shape Recognition Using Grassmann Manifold. ACTA AUTOMATICA SINICA, 2012, 38(2): 248-258. doi: 10.3724/SP.J.1004.2012.00248
Citation: LIU Yun-Peng, LI Guang-Wei, SHI Ze-Lin. Affine-invariant Shape Recognition Using Grassmann Manifold. ACTA AUTOMATICA SINICA, 2012, 38(2): 248-258. doi: 10.3724/SP.J.1004.2012.00248

基于Grassmann流形的仿射不变形状识别

doi: 10.3724/SP.J.1004.2012.00248
详细信息
    通讯作者:

    刘云鹏, 中国科学院沈阳自动化研究所博士研究生. 主要研究方向为目标跟踪和识别. E-mail: ypliu@sia.cn

Affine-invariant Shape Recognition Using Grassmann Manifold

  • 摘要: 传统的Kendall形状空间理论仅适用于相似变换, 然而成像过程中目标发生的几何变形在更多情形时应该用仿射变换来刻画. 基于Grassmann流形理论, 本文分析了仿射不变形状空间的非线性几何结构, 提出了基于Grassmann流形的仿射不变形状识别算法. 算法首先对训练集中的每类形状分别计算形状均值和方差, 进而在形状均值附近的切空间构建多变量正态分布; 最后,根据测试形状的观测和先验形状模型求解测试形状的最大似然类, 对形状进行贝叶斯分类. MPEG 7形状数据库的实验结果表明, 与传统Kendall形状分析中的基于Procrustean度量识别算法相比, 本文识别算法具有明显优势; 真实场景中的目标识别结果进一步表明, 本文算法对仿射变形有更好的适应能力, 在复杂场景下能以较高的后验概率辨识出目标类别.
  • [1] Srivastava A, Damon J N, Dryden I L, Jermyn I H. Guest editors' introduction to the special section on shape analysis and its applications in image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 577-578[2] Kendall D G. Shape manifolds, procrustean metrics and complex projective spaces. Bulletin of London Mathematical Society, 1984, 16(2): 81-121[3] Zhang J, Zhang X, Krim H, Walter G G. Object representation and recognition in shape spaces. Pattern Recognition, 2003, 36(5): 1143-1154[4] Huckemann S, Hotz T, Munk A. Intrinsic MANOVA for Riemannian manifolds with an application to Kendall's space of planar shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 593-603[5] Han Y X, Wang B, Idesawa M, Shimai H. Recognition of multiple configurations of objects with limited data. Pattern Recognition, 2010, 43(4): 1467-1475[6] Huttenlocher D P, Ullman S. Recognizing solid objects by alignment with an image. International Journal of Computer Vision, 1990, 5(2): 195-212[7] Grenander U, Miller M I. Pattern Theory: from Representation to Inference. New York: Oxford University Press, 2007[8] Fletcher P T, Whitaker T R. Riemannian metrics on the space of solid shapes. In: Proceedings of the International Workshop on Mathematical Foundations of Computational Anatomy. Copenhagen, Denmark: MICCAI, 2006. 1-11[9] Klassen E, Srivastava A, Mio W, Joshi S. Analysis of planar shapes using geodesic paths on shape spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(3): 372-383[10] Srivastava A, Joshi S, Mio W, Liu X W. Statistical shape analysis: clustering, learning and testing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(4): 590-602[11] Cootes T F, Taylor C J, Cooper D H, Graham J. Active shape models: their training and application. Computer Vision and Image Understanding, 1995, 61(1): 38-59[12] Wang B, Chen Y Q. An invariant shape representation: interior angle chain. International Journal of Pattern Recognition and Artificial Intelligence, 2007, 21(3): 543-559[13] Chen Xiao-Chun, Ye Mao-Dong, Ni Chen-Min. A method for shape recognition. Pattern Recognition and Artificial Intelligence, 2006, 19(6): 758-763(陈孝春, 叶懋冬, 倪臣敏. 一种形状识别的方法. 模式识别与人工智能, 2006, 19(6): 758-763)[14] Mumford D. Mathematic theories of shape: do they model perception? In: Proceedings of the Conference on Geometric Methods in Computer Vision. San Diego, USA: SPIE, 1991. 2-10[15] Latecki L J, Lakimper R, Eckhardt U. Shape descriptors for non-rigid shapes with a single closed contour. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA: IEEE, 2000. 424-429[16] Spivak M. A Comprehensive Introduction to Differential Geometry. Berlin: Berkeley, 1979[17] Berger M. A Panoramic View of Riemannian Geometry. Berlin: Springer, 2003[18] Edelman A, Arias T A, Smith S T. The geometry of algorithms with orthogonality constraints. SIAM Journal on Matrix Analysis and Applications, 1999, 20(2): 303-353[19] Lin D, Yan S, Tang X. Pursuing informative projection on Grassmann manifold. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 1727-1734[20] Zhang L, Tse D N. Communication on the Grassmann manifold: a geometric approach to the noncoherent multiple-antenna channel. IEEE Transactions on Information Theory, 2002, 48(2): 359-383[21] Amsallem D, Farhat C. An interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA Journal, 2008, 46(7): 1803-1813[22] Subbarao R, Meer P. Nonlinear mean shift over Riemannian manifolds. International Journal of Computer Vision, 2009, 84(1): 1-20[23] Absil P A, Mahoney R, Sepulchre R. Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Arta Applicandae Mathematicae, 2004, 80(2): 199-220[24] Fletcher P T, Lu C, Pizer S M, Joshi S. Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 2004, 23(8): 995-1005[25] Baker S, Matthews I. Lucas-Kanade 20 years on: a unifying framework. International Journal of Computer Vision, 2004, 56(3): 221-255[26] Marszalek M, Schmid C. Accurate object localization with shape masks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Minnesota, USA: IEEE, 2007. 1-8[27] Dryden I L, Mardia K V. Statistical Shape Analysis. New York: John Wiley and Sons, 1998
  • 加载中
计量
  • 文章访问数:  2615
  • HTML全文浏览量:  73
  • PDF下载量:  1202
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-11
  • 修回日期:  2010-10-13
  • 刊出日期:  2012-02-20

目录

    /

    返回文章
    返回