[1]
|
Gilbert A, Bowden R. Tracking objects across cameras by incrementally learning inter-camera color calibration and patterns of activity. In: Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 125-136[2] Javed O, Shafique K, Rasheed Z, Shah M. Modeling inter-camera space-time and appearance relationships for tracking across non-overlapping views. Computer Vision and Image Understanding, 2008, 109(2): 146-162[3] Song B, Roy-Chowdhury A K. Robust tracking in a camera network: a multi-objective optimization framework. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(4): 582-596[4] Liu Shao-Hua, Lai Shi-Ming, Zhang Mao-Jun. A min-cost flow based algorithm for objects association of multiple non-overlapping cameras. Acta Automatica Sinica, 2010, 36(10): 1484-1489(刘少华, 赖世铭, 张茂军. 基于最小费用流模型的无重叠视域多摄像机目标关联算法. 自动化学报, 2010, 36(10): 1484-1489)[5] Zajdel W, Klose B. A sequential Bayesian algorithm for surveillance with nonoverlapping cameras. International Journal of Pattern Recognition and Artificial Intelligence, 2005, 19(8): 977-996[6] Camp F, Bernardin K, Stiefelhagen R. Person tracking in camera networks using graph-based Bayesian inference. In: Proceedings of the 3rd ACM/IEEE International Conference on Distributed Smart Cameras. Como, Italy: IEEE, 2009. 1-8[7] Kim H, Romberg J, Wolf W. Multi-camera tracking on a graph using Markov chain Monte Carlo. In: Proceedings of the 3rd ACM/IEEE International Conference on Distributed Smart Cameras. Como, Italy: IEEE, 2009. 1-8[8] Oh S, Russell S, Sastry S. Markov chain Monte Carlo data association for multi-target tracking. IEEE Transactions on Automatic Control, 2009, 54(3): 481-497[9] Goyat Y, Chateau T, Bardet F. Vehicle trajectory estimation using spatio-temporal MCMC. EURASIP Journal on Advances in Signal Processing, 2010: Article ID 712854, 8 pages[10] Zajdel W, Klose B. Gaussian mixture models for multi-sensor tracking. In: Proceedings of the 15th Dutch-Belgian Artificial Intelligence Conference. Nijmegen, Netherlands: BNAIC, 2003. 371-378[11] Zajdel W. Bayesian Visual Surveillance: from Object Detection to Distributed Cameras [Ph.D. dissertation], University of Amsterdam, Netherlands, 2006[12] Murphy K P. Dynamic Bayesian Networks: Representation, Inference and Learning [Ph.D. dissertation], University of California, Berkeley, USA, 2002[13] Boyen X, Koller D. Tractable inference for complex stochastic processes. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Madison, USA: Morgan Kaufmann, 1998. 33-42[14] Shachter R D. Bayes-ball: the rational pastime (for determining irrelevance and requisite information in belief networks and influence diagrams). In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Madison, USA: Morgan Kaufmann, 1998. 480-487[15] Dempster A P, Laird N M, Rubin D B. Maximum-likelihood from incomplete data via the EM algorithm. Journal of Royal Statistics Society, Series B, 1977, 39(1): 1-38[16] Bilmes J A. A Gentle Tutorial on the EM Algorithm and Its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models, Technical Report TR-97-021, University of California, Berkeley, USA, 1998[17] Jepson A D, Fleet D J, El-maraghi T F. Robust online appearance models for visual tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, USA: IEEE, 2001. 415-422[18] Wan J, Liu Q. Efficient data association in visual sensor networks with missing detection. EURASIP Journal on Advances in Signal Processing, 2011, 2011: Article ID 176026, 25 pages
|