[1]
|
Zadeh L A. Is there a need for fuzzy logic? Information Sciences, 2008, 178(13): 2751-2779[2] Atanassov K T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1986, 20(1): 87-96[3] Atanassov K T, Gargov G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1989, 31(3): 343-349[4] Atanassov K T. Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1994, 64(2): 159-174[5] Burillo P, Bustince H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets and Systems, 1996, 78(3): 305-316[6] Chaira T, Ray A K. A new measure using intuitionistic fuzzy set theory and its application to edge detection. Applied Soft Computing, 2008, 8(2): 919-927[7] Chen T Y, Li C H. Determining objective weights with intuitionistic fuzzy entropy measures: a comparative analysis. Information Sciences, 2010, 180(21): 4207-4222[8] Chen S M, Tan J M. Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems, 1994, 67(2): 163-172[9] Chen Q, Xu Z S, Liu S S, Yu X H. A method based on interval-valued intuitionistic fuzzy entropy for multiple attribute decision making. Information: an International Interdisciplinary Journal, 2010, 13(1): 67-77[10] Cornelis C, Deschrijver G, Kerre E E. Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. International Journal of Approximate Reasoning, 2004, 35(1): 55-95[11] Hong D H, Choi C H. Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems, 2000, 114(1): 103-113[12] Kim S H, Ahn B S. Interactive group decision making procedure under incomplete information. European Journal of Operational Research, 1999, 116(3): 498-507[13] Li D F. TOPSIS-based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets. IEEE Transactions on Fuzzy Systems, 2010, 18(2): 299-311[14] Li D F. Linear programming method for MADM with interval-valued intuitionistic fuzzy sets. Expert Systems with Applications, 2010, 37(8): 5939-5945[15] Nayagam V L G, Muralikrishnan S, Sivaraman G. Multi-criteria decision-making method based on interval-valued intuitionistic fuzzy sets. Expert Systems with Applications, 2011, 38(3): 1464-1467[16] Park D G, Kwun Y C, Park J H, Park I Y. Correlation coefficient of interval-valued intuitionistic fuzzy sets and its application to multiple attribute group decision making problems. Mathematical and Computer Modelling, 2009, 50(9-10): 1279-1293[17] Vlachos I K, Sergiadis G D. Subsethood, entropy, and cardinality for interval-valued fuzzy sets--an algebraic derivation. Fuzzy Sets and Systems, 2007, 158(12): 1384-1396[18] Wang Z J, Li K V, Wang W Z. An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights. Information Sciences, 2009, 179(17): 3026-3040[19] Xia M M, Xu Z S. Generalized point operators for aggregating intuitionistic fuzzy information. International Journal of Intelligent Systems, 2010, 25(11): 1061-1080[20] Xia M M, Xu Z S. Entropy/cross entropy-based group decision making under intuitionistic fuzzy environment. Information Fusion, 2012, 13(1): 31-47[21] Xu Z S. Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems, 2007, 15(6): 1179-1187[22] Xu Z S, Yager R R. Some geometric aggregation operators based on intuitionistic fuzzy sets. International Journal of General Systems, 2006, 35(4): 417-433[23] Xu Z S. Intuitionistic preference relations and their application in group decision making. Information Sciences, 2007, 177(11): 2363-2379[24] Xu Z S. Models for multiple attribute decision making with intuitionistic fuzzy information. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2007, 15(3): 285-297[25] Xu Z S, Cai X Q. Incomplete interval-valued intuitionistic fuzzy preference relations. International Journal of General Systems, 2009, 38(8): 871-886[26] Xu Z S, Cai X Q. Nonlinear optimization models for multiple attribute group decision making with intuitionistic fuzzy information. International Journal of Intelligent Systems, 2010, 25(6): 489-513[27] Xu Z S. Choquet integrals of weighted intuitionistic fuzzy information. Information Sciences, 2010, 180(5): 726-736[28] Xu Z S. A deviation-based approach to intuitionistic fuzzy multiple attribute group decision making. Group Decision and Negotiation, 2010, 19(1): 57-76[29] Xu Z S, Hu H. Projection models for intuitionistic fuzzy multiple attribute decision making. International Journal of Information Technology and Decision Making, 2010, 9(2): 267-280[30] Xu Z S, Cai X Q. Recent advances in intuitionistic fuzzy information aggregation. Fuzzy Optimization and Decision Making, 2010, 9(4): 359-381[31] Xu Z S, Yager R R. Intuitionistic fuzzy Bonferroni means. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(2): 568-578[32] Xu Z S, Xia M M. Induced generalized intuitionistic fuzzy operators. Knowledge-Based Systems, 2011, 24(2): 197-209[33] Xu Z S. Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. Knowledge-Based Systems, 2011, 24(6): 749-760[34] Xu Z S, Chen J. An interactive method for fuzzy multiple attribute group decision making. Information Sciences, 2007, 177(1): 248-263[35] Xu Z S. A method for multiple attribute decision making with incomplete weight information in linguistic setting. Knowledge-Based Systems, 2007, 20(8): 719-725[36] Xu Z S. Multi-person multi-attribute decision making models under intuitionistic fuzzy environment. Fuzzy Optimization and Decision Making, 2007, 6(3): 221-236[37] Xu Z S, Yager R R. Dynamic intuitionistic fuzzy multi-attribute decision making. International Journal of Approximate Reasoning, 2008, 48(1): 246-262[38] Xu Z S. A method based on distance measure for interval-valued intuitionistic fuzzy group decision making. Information Sciences, 2010, 180(1): 181-190[39] Xu Z S, Chen J. On geometric aggregation over interval-valued intuitionistic fuzzy information. In: Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery. Haikou, China: IEEE, 2007. 466-471[40] Xu Ze-Shui. Intuitionistic Fuzzy Information Aggregation Theory and Application. Beijing: Science Press, 2008. 1-208(徐泽水. 直觉模糊信息集成理论及应用. 北京: 科学出版社, 2008. 1-208)[41] Ye J. Multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment. Expert Systems with Applications, 2009, 36(3): 6899-6902[42] Yu X H, Xu Z S, Chen Q. A method based on preference degrees for handling hybrid multiple attribute decision making problems. Expert Systems with Applications, 2011, 38(4): 3147-3154[43] Zhang Y J, Ma P J, Su X H. Pattern recognition using interval-valued intuitionistic fuzzy set and its similarity degree. In: Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems. Shanghai, China: IEEE, 2009. 361-365[44] Zhao H, Xu Z S, Ni M F, Liu S S. Generalized aggregation operators for intuitionistic fuzzy sets. International Journal of Intelligent Systems, 2010, 25(1): 1-30[45] Zhang Q S, Jiang S Y, Jia B G, Luo S H. Some information measures for interval-valued intuitionistic fuzzy sets. Information Sciences, 2010, 180(24): 5130-5145[46] Zhu Jian-Jun, Liu Si-Feng, Wang He-Hua. Aggregation approach of two kinds of three-point interval number comparison matrix in group decision making. Acta Automatica Sinica, 2007, 33(3): 297-301(朱建军, 刘思峰, 王翯华. 群决策中两类三端点区间数判断矩阵的集结方法. 自动化学报, 2007, 33(3): 297-301)[47] Xiao Di, Hu Shou-Song. Real rough set theory and attribute reduction. Acta Automatica Sinica, 2007, 33(3): 253-258(肖迪, 胡寿松. 实域粗糙集理论及属性约简. 自动化学报, 2007, 33(3): 253-258)[48] Wang Hong-Wei, Qi Chao, Wei Yong-Chang, Li Bin, Zhu Song. Review on data-based decision making methodologies. Acta Automatica Sinica, 2009, 35(6): 820-833(王红卫, 祁超, 魏永长, 李彬, 朱松. 基于数据的决策方法综述. 自动化学报, 2009, 35(6): 820-833)
|