2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多率系统Kalman滤波算法的鲁棒性分析

吴瑶 罗雄麟

吴瑶, 罗雄麟. 多率系统Kalman滤波算法的鲁棒性分析. 自动化学报, 2012, 38(2): 156-174. doi: 10.3724/SP.J.1004.2012.00156
引用本文: 吴瑶, 罗雄麟. 多率系统Kalman滤波算法的鲁棒性分析. 自动化学报, 2012, 38(2): 156-174. doi: 10.3724/SP.J.1004.2012.00156
WU Yao, LUO Xiong-Lin. Robustness Analysis of Kalman Filtering Algorithm for Multirate Systems. ACTA AUTOMATICA SINICA, 2012, 38(2): 156-174. doi: 10.3724/SP.J.1004.2012.00156
Citation: WU Yao, LUO Xiong-Lin. Robustness Analysis of Kalman Filtering Algorithm for Multirate Systems. ACTA AUTOMATICA SINICA, 2012, 38(2): 156-174. doi: 10.3724/SP.J.1004.2012.00156

多率系统Kalman滤波算法的鲁棒性分析

doi: 10.3724/SP.J.1004.2012.00156
详细信息
    通讯作者:

    罗雄麟, 中国石油大学(北京)自动化研究所教授. 主要研究方向为多率系统分析,智能控制,预测控制. E-mail: luoxl@cup.edu.cn

Robustness Analysis of Kalman Filtering Algorithm for Multirate Systems

  • 摘要: 多率系统Kalman滤波算法是多率采样系统中对多源观测进行融合的重要手段. 基于化工过程的多率采样特点, 给出了多率Kalman滤波算法, 分析了该算法在模型失配情况下的鲁棒性. 在给定的假设条件下, 通过对滤波误差变化规律的分析, 给出了多率Kalman滤波稳定与发散的基本判定方法. 针对一类典型系统, 推导出了滤波稳定与发散判据. 通过仿真对该判据进行了验证, 仿真结果表明所提出的滤波鲁棒性分析方法可以用于算法的实际应用.
  • [1] Ding Feng, Chen Tong-Wen. Modeling and identification of multirate systems. Acta Automatica Sinica, 2005, 31(1): 105-122[2] Ding F, Chen T W. Combined parameter and output estimation of dual-rate systems using an auxiliary model. Automatica, 2004, 40(10): 1739-1748[3] Ding F, Chen T W. Identification of dual-rate systems based on finite impulse response models. International Journal of Adaptive Control and Signal Processing, 2004, 18(7): 589-598[4] Ding F, Chen T W. Parameter estimation of dual-rate stochastic systems by using an output error method. IEEE Transactions on Automatic Control, 2005, 50(9): 1436-1441[5] Ding J, Shi Y, Wang H, Ding F. A modified stochastic gradient based parameter estimation algorithm for dual-rate sampled-data systems. Digital Signal Processing, 2010, 20(4): 1238-1247[6] Ding F, Liu P X, Yang H Z. Parameter identification and inter sample output estimation for dual-rate systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2008, 38(4): 966-975[7] Ding F, Chen T W. Hierarchical identification of lifted state-space models for general dual-rate systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, 52(6): 1179-1187[8] Ding Feng, Chen Tong-Wen, Xiao De-Yun. State-space modeling and identification of general dual-rate stochastic systems. Acta Automatica Sinica, 2004, 30(5): 652-663(丁锋, 陈通文, 萧德云. 一般双率随机系统状态空间模型及其辨识. 自动化学报, 2004, 30(5): 652-663)[9] Han L L, Sheng J, Ding F, Shi Y. Auxiliary model identification method for multirate multi-input systems based on least squares. Mathematical and Computer Modelling, 2009, 50(7-8): 1100-1106[10] Han L L, Ding F. Identification for multirate multi-input systems using the multi-innovation identification theory. Computers and Mathematics with Applications, 2009, 57(9): 1438-1449[11] Han L L, Ding F. Parameter estimation for multirate multi-input systems using auxiliary model and multi-innovation. Journal of Systems Engineering and Electronics, 2010, 21(6): 1079-1083[12] Liu X G, Lu J. Least squares based iterative identification for a class of multirate systems. Automatica, 2010, 46(3): 549-554[13] Ding F, Liu G, Liu P X. Partially coupled stochastic gradient identification methods for non-uniformly sampled systems. IEEE Transactions on Automatic Control, 2010, 55(8): 1976-1981[14] Ding F, Qiu L, Chen T W. Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems. Automatica, 2009, 45(2): 324-332[15] Xie L, Liu Y J, Yang H Z, Ding F. Modelling and identification for non-uniformly periodically sampled-data systems. IET Control Theory and Applications, 2010, 4(5): 784-794[16] Liu Y J, Xie L, Ding F. An auxiliary model based recursive least-squares parameter estimation algorithm for non-uniformly sampled multirate systems. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2009, 223(4): 445-454[17] Ding Feng, Chen Tong-Wen, Xiao De-Yun. Identification of non-uniformly periodically sampled multirate systems. Acta Electronica Sinica, 2004, 32(9): 1414-1420(丁锋, 陈通文, 萧德云. 非均匀周期采样多率系统的一种辨识方法. 电子学报, 2004, 32(9): 1414-1420)[18] Ni Bo-Yi, Xiao De-Yun. A recursive identification method for non-uniformly sampled systems. Acta Automatica Sinica, 2009, 35(12): 1520-1527(倪博溢, 萧德云. 非均匀采样系统的一种递推辨识方法. 自动化学报, 2009, 35(12): 1520-1527)[19] Xie L, Yang H Z. Gradient based iterative identification for nonuniform sampling output error systems. Journal of Vibration and Control, 2011, 17(3): 471-478[20] Xie L, Yang H Z, Ding F. Recursive least squares parameter estimation for non-uniformly sampled systems based on the data filtering. Mathematical and Computer Modelling, 2011, 54(1-2): 315-324[21] Ding F, Liu G, Liu X P. Parameter estimation with scarce measurements. Automatica, 2011, 47(8): 1646-1655[22] Wu Yao, Luo Xiong-Lin. Progress of multi-rate digital control technique in chemical industry. Chemical Industry and Engineering Progress, 2008, 27(9): 1342-1347(吴瑶, 罗雄麟. 化工多采样率数字控制技术研究进展. 化工进展, 2008, 27(9): 1342-1347)[23] Ding F, Chen T W. A gradient based adaptive control algorithm for dual-rate systems. Asian Journal of Control, 2006, 8(4): 314-323[24] Ding F, Chen T W, Iwai Z. Adaptive digital control of Hammerstein nonlinear systems with limited output sampling. SIAM Journal on Control and Optimization, 2007, 45(6): 2257-2276[25] Ding F, Chen T W. Least squares based self-tuning control of dual-rate systems. International Journal of Adaptive Control and Signal Processing, 2004, 18(8): 697-714[26] Kalman R E, Bertram J E. A unified approach to the theory of sampling systems. Journal of the Franklin Institute, 1959, 267(5): 405-436[27] Assis A J, Filho R M. Soft sensors development for online bioreactor state estimation. Computers and Chemical Engineering, 2000, 24(2-7): 1099-1103[28] Nishimura T. Spectral factorization in periodically time-varying systems and application to navigation problems. Journal of Spacecraft and Rockets, 1972, 9(7): 540-546[29] Sahebsara M, Chen T, Shah S L. Optimal fast-rate soft-sensor design for multi-rate processes. In: Proceedings of the American Control Conference. Minneapolis, USA: IEEE, 2006. 976-981[30] Prasad V, Schley M, Russo L P, Bequette B W. Product property and production rate control of styrene polymerization. Journal of Process Control, 2002, 12(3): 353-372[31] Wu Y, Luo X L. A design of soft sensor based on data fusion. In: Proceedings of the International Conference on Information Engineering and Computer Science. Wuhan, China: IEEE, 2009. 3442-3445[32] Li W H, Shah S L, Xiao D Y. Kalman filters in non-uniformly sampled multirate systems: for FDI and beyond. Automatica, 2008, 44(1): 199-208[33] Wu Y, Luo X L. A novel calibration approach of soft sensor based on multirate data fusion technology. Journal of Process Control, 2010, 20(10): 1252-1260[34] Fitzgerald R. Divergence of the Kalman filter. IEEE Transactions on Automatic Control, 1971, 16(6): 736-747[35] Kano H. Periodic solutions of matrix Riccati equations in discrete time-invariant systems. International Journal of Control, 1983, 38(1): 27-45[36] Lennartson B. Periodic solutions of Riccati equations applied to multirate sampling. International Journal of Control, 1988, 48(3): 1025-1042[37] Bittanti S, Colaneri P, Guardabassi G. Periodic solutions of periodic Riccati equations. IEEE Transactions on Automatic Control, 1984, 29(7): 665-667[38] Arvanitis K, Paraskevopoulos P, Vernardos A. Multirate adaptive temperature control of greenhouses. Computers and Electronics in Agriculture, 2000, 26(3): 303-320[39] Phan D T. The design and modeling of multirate digital control systems for disk drive applications. In: Proceedings of the Asia-Pacific Workshop on Advances in Motion Control. Singapore, Singapore: IEEE, 1993. 189-205[40] Li W, Han Z, Shah S L. Subspace identification for FDI in systems with non-uniformly sampled multirate data. Automatica, 2006, 42(4): 619-627[41] Raghavan H, Tangirala A, Gopaluni R, Shah S L. Identification of chemical processes with irregular output sampling. Control Engineering Practice, 2006, 14(5): 467-480[42] Ni Bo-Yi, Xiao De-Yun. A survey on identification of multirate sampled systems. Control Theory and Applications, 2009, 26(1): 62-68(倪博溢, 萧德云. 多采样率系统的辨识问题综述. 控制理论与应用, 2009, 26(1): 62-68)[43] Friedland B. Sampled-data control systems containing periodically varying members. In: Proceedings of the 1st IFAC World Congress, Moscow: 1961. 361-367[44] Bittanti S, Guardabassi G. Optimal periodic control and periodic systems analysis: an overview. In: Proceedings of the 25th IEEE Conference on Decision and Control. Athens, Greece: IEEE, 1986. 1417-1423
  • 加载中
计量
  • 文章访问数:  2696
  • HTML全文浏览量:  72
  • PDF下载量:  1824
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-15
  • 修回日期:  2011-11-10
  • 刊出日期:  2012-02-20

目录

    /

    返回文章
    返回