[1]
|
Ding Feng, Chen Tong-Wen. Modeling and identification of multirate systems. Acta Automatica Sinica, 2005, 31(1): 105-122[2] Ding F, Chen T W. Combined parameter and output estimation of dual-rate systems using an auxiliary model. Automatica, 2004, 40(10): 1739-1748[3] Ding F, Chen T W. Identification of dual-rate systems based on finite impulse response models. International Journal of Adaptive Control and Signal Processing, 2004, 18(7): 589-598[4] Ding F, Chen T W. Parameter estimation of dual-rate stochastic systems by using an output error method. IEEE Transactions on Automatic Control, 2005, 50(9): 1436-1441[5] Ding J, Shi Y, Wang H, Ding F. A modified stochastic gradient based parameter estimation algorithm for dual-rate sampled-data systems. Digital Signal Processing, 2010, 20(4): 1238-1247[6] Ding F, Liu P X, Yang H Z. Parameter identification and inter sample output estimation for dual-rate systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2008, 38(4): 966-975[7] Ding F, Chen T W. Hierarchical identification of lifted state-space models for general dual-rate systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, 52(6): 1179-1187[8] Ding Feng, Chen Tong-Wen, Xiao De-Yun. State-space modeling and identification of general dual-rate stochastic systems. Acta Automatica Sinica, 2004, 30(5): 652-663(丁锋, 陈通文, 萧德云. 一般双率随机系统状态空间模型及其辨识. 自动化学报, 2004, 30(5): 652-663)[9] Han L L, Sheng J, Ding F, Shi Y. Auxiliary model identification method for multirate multi-input systems based on least squares. Mathematical and Computer Modelling, 2009, 50(7-8): 1100-1106[10] Han L L, Ding F. Identification for multirate multi-input systems using the multi-innovation identification theory. Computers and Mathematics with Applications, 2009, 57(9): 1438-1449[11] Han L L, Ding F. Parameter estimation for multirate multi-input systems using auxiliary model and multi-innovation. Journal of Systems Engineering and Electronics, 2010, 21(6): 1079-1083[12] Liu X G, Lu J. Least squares based iterative identification for a class of multirate systems. Automatica, 2010, 46(3): 549-554[13] Ding F, Liu G, Liu P X. Partially coupled stochastic gradient identification methods for non-uniformly sampled systems. IEEE Transactions on Automatic Control, 2010, 55(8): 1976-1981[14] Ding F, Qiu L, Chen T W. Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems. Automatica, 2009, 45(2): 324-332[15] Xie L, Liu Y J, Yang H Z, Ding F. Modelling and identification for non-uniformly periodically sampled-data systems. IET Control Theory and Applications, 2010, 4(5): 784-794[16] Liu Y J, Xie L, Ding F. An auxiliary model based recursive least-squares parameter estimation algorithm for non-uniformly sampled multirate systems. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2009, 223(4): 445-454[17] Ding Feng, Chen Tong-Wen, Xiao De-Yun. Identification of non-uniformly periodically sampled multirate systems. Acta Electronica Sinica, 2004, 32(9): 1414-1420(丁锋, 陈通文, 萧德云. 非均匀周期采样多率系统的一种辨识方法. 电子学报, 2004, 32(9): 1414-1420)[18] Ni Bo-Yi, Xiao De-Yun. A recursive identification method for non-uniformly sampled systems. Acta Automatica Sinica, 2009, 35(12): 1520-1527(倪博溢, 萧德云. 非均匀采样系统的一种递推辨识方法. 自动化学报, 2009, 35(12): 1520-1527)[19] Xie L, Yang H Z. Gradient based iterative identification for nonuniform sampling output error systems. Journal of Vibration and Control, 2011, 17(3): 471-478[20] Xie L, Yang H Z, Ding F. Recursive least squares parameter estimation for non-uniformly sampled systems based on the data filtering. Mathematical and Computer Modelling, 2011, 54(1-2): 315-324[21] Ding F, Liu G, Liu X P. Parameter estimation with scarce measurements. Automatica, 2011, 47(8): 1646-1655[22] Wu Yao, Luo Xiong-Lin. Progress of multi-rate digital control technique in chemical industry. Chemical Industry and Engineering Progress, 2008, 27(9): 1342-1347(吴瑶, 罗雄麟. 化工多采样率数字控制技术研究进展. 化工进展, 2008, 27(9): 1342-1347)[23] Ding F, Chen T W. A gradient based adaptive control algorithm for dual-rate systems. Asian Journal of Control, 2006, 8(4): 314-323[24] Ding F, Chen T W, Iwai Z. Adaptive digital control of Hammerstein nonlinear systems with limited output sampling. SIAM Journal on Control and Optimization, 2007, 45(6): 2257-2276[25] Ding F, Chen T W. Least squares based self-tuning control of dual-rate systems. International Journal of Adaptive Control and Signal Processing, 2004, 18(8): 697-714[26] Kalman R E, Bertram J E. A unified approach to the theory of sampling systems. Journal of the Franklin Institute, 1959, 267(5): 405-436[27] Assis A J, Filho R M. Soft sensors development for online bioreactor state estimation. Computers and Chemical Engineering, 2000, 24(2-7): 1099-1103[28] Nishimura T. Spectral factorization in periodically time-varying systems and application to navigation problems. Journal of Spacecraft and Rockets, 1972, 9(7): 540-546[29] Sahebsara M, Chen T, Shah S L. Optimal fast-rate soft-sensor design for multi-rate processes. In: Proceedings of the American Control Conference. Minneapolis, USA: IEEE, 2006. 976-981[30] Prasad V, Schley M, Russo L P, Bequette B W. Product property and production rate control of styrene polymerization. Journal of Process Control, 2002, 12(3): 353-372[31] Wu Y, Luo X L. A design of soft sensor based on data fusion. In: Proceedings of the International Conference on Information Engineering and Computer Science. Wuhan, China: IEEE, 2009. 3442-3445[32] Li W H, Shah S L, Xiao D Y. Kalman filters in non-uniformly sampled multirate systems: for FDI and beyond. Automatica, 2008, 44(1): 199-208[33] Wu Y, Luo X L. A novel calibration approach of soft sensor based on multirate data fusion technology. Journal of Process Control, 2010, 20(10): 1252-1260[34] Fitzgerald R. Divergence of the Kalman filter. IEEE Transactions on Automatic Control, 1971, 16(6): 736-747[35] Kano H. Periodic solutions of matrix Riccati equations in discrete time-invariant systems. International Journal of Control, 1983, 38(1): 27-45[36] Lennartson B. Periodic solutions of Riccati equations applied to multirate sampling. International Journal of Control, 1988, 48(3): 1025-1042[37] Bittanti S, Colaneri P, Guardabassi G. Periodic solutions of periodic Riccati equations. IEEE Transactions on Automatic Control, 1984, 29(7): 665-667[38] Arvanitis K, Paraskevopoulos P, Vernardos A. Multirate adaptive temperature control of greenhouses. Computers and Electronics in Agriculture, 2000, 26(3): 303-320[39] Phan D T. The design and modeling of multirate digital control systems for disk drive applications. In: Proceedings of the Asia-Pacific Workshop on Advances in Motion Control. Singapore, Singapore: IEEE, 1993. 189-205[40] Li W, Han Z, Shah S L. Subspace identification for FDI in systems with non-uniformly sampled multirate data. Automatica, 2006, 42(4): 619-627[41] Raghavan H, Tangirala A, Gopaluni R, Shah S L. Identification of chemical processes with irregular output sampling. Control Engineering Practice, 2006, 14(5): 467-480[42] Ni Bo-Yi, Xiao De-Yun. A survey on identification of multirate sampled systems. Control Theory and Applications, 2009, 26(1): 62-68(倪博溢, 萧德云. 多采样率系统的辨识问题综述. 控制理论与应用, 2009, 26(1): 62-68)[43] Friedland B. Sampled-data control systems containing periodically varying members. In: Proceedings of the 1st IFAC World Congress, Moscow: 1961. 361-367[44] Bittanti S, Guardabassi G. Optimal periodic control and periodic systems analysis: an overview. In: Proceedings of the 25th IEEE Conference on Decision and Control. Athens, Greece: IEEE, 1986. 1417-1423
|