2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受控拉格朗日函数方法综述

吴凡 耿志勇

吴凡, 耿志勇. 受控拉格朗日函数方法综述. 自动化学报, 2012, 38(2): 145-155. doi: 10.3724/SP.J.1004.2012.00145
引用本文: 吴凡, 耿志勇. 受控拉格朗日函数方法综述. 自动化学报, 2012, 38(2): 145-155. doi: 10.3724/SP.J.1004.2012.00145
WU Fan, GENG Zhi-Yong. A Survey for Controlled Lagrangian Method. ACTA AUTOMATICA SINICA, 2012, 38(2): 145-155. doi: 10.3724/SP.J.1004.2012.00145
Citation: WU Fan, GENG Zhi-Yong. A Survey for Controlled Lagrangian Method. ACTA AUTOMATICA SINICA, 2012, 38(2): 145-155. doi: 10.3724/SP.J.1004.2012.00145

受控拉格朗日函数方法综述

doi: 10.3724/SP.J.1004.2012.00145
详细信息
    通讯作者:

    吴凡, 北京大学力学与空天技术系博士. 主要研究方向为力学系统的非线性控制. E-mail: wufan@pku.edu.cn

A Survey for Controlled Lagrangian Method

  • 摘要: 受控拉格朗日函数(Controlled Lagrangians, CL)方法是一种以能量观点设计简单力学系统镇定控制律的方法. 自1997年正式提出以来, CL法在理论及应用上都得到了发展. 理论上包括研究CL法的可行性,针对特定类系统简化CL法设计, 利用CL法解决镇定之外的控制问题. 应用上主要是将CL法用于多种实际力学系统, 尤其是欠驱动力学系统的控制. 本综述将介绍CL法的主要思想与理论; 回顾各控制研究团队所作理论与应用推广; 讨论关于CL法一些尚存的问题 以及未来研究方向.
  • [1] Takegaki M, Arimoto S. A new feedback method for dynamic control of manipulators. Journal of Dynamic Systems, Measurement, and Control, 1981, 103(2): 119-125[2] Schaft V D A J. Stabilization of Hamiltonian systems. Nonlinear Analysis, Theory, Methods and Applications, 1986, 10(10): 1021-1035[3] Bloch A M, Leonard N E, Marsden J E. Stabilization of mechanical systems using controlled Lagrangians. In: Proceedings of the 36th IEEE Conference on Decision and Control. San Diego, USA: IEEE, 1997. 2356-2361[4] Bloch A M, Leonard N E, Marsden J E. Controlled Lagrangians and the stabilization of mechanical systems I: the first matching theorem. IEEE Transactions on Automatic Control, 2000, 45(12): 2253-2269[5] Lewis A D. Notes on energy shaping. In: Proceedings of the 43rd IEEE Conference on Decision and Control. Nassau, Bahamas: IEEE, 2004. 4818-4823[6] Lewis A D. Potential energy shaping after kinetic energy shaping. In: Proceedings of the 45th IEEE Conference on Decision and Control. San Diego, USA: IEEE, 2006. 3339-3344[7] Gharesifard B, Lewis A D, Mansouri A R. A geometric framework for stabilization by energy shaping: sufficient conditions for existence of solutions. Communications in Information and Systems, 2008, 8(4): 353-398[8] Reddy C K. Practical Challenges in the Method of Controlled Lagrangians [Ph.D. dissertation], Virginia Polytechnic Institute and State University, USA, 2005[9] Long D, Zenkov D V. Relaxed matching for stabilization of relative equilibria of mechanical systems. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, USA: IEEE, 2007. 6238-6243[10] Zenkov D V, Bloch A M, Marsden J E. Controlled Lagrangian methods and tracking of accelerated motions. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, USA: IEEE, 2003. 533-538[11] Nair S N, Leonard N E. Stable synchronization of mechanical system networks. SIAM Journal on Control and Optimization, 2008, 47(2): 661-683[12] Nair S N, Leonard N E. Stable synchronization of rigid body networks. Networks and Heterogeneous Media, 2007, 2(4): 595-624[13] Machleidt K, Kroneis J, Liu S. Stabilization of the Furuta pendulum using a nonlinear control law based on the method of controlled Lagrangians. In: Proceedings of the IEEE International Symposium on Industrial Electronics. Vigo, Spain: IEEE, 2007. 2129-2134[14] Freidovich L, Shiriaev A, Gordillo F, Gomez-Estern F, Aracil J. Partial-energy-shaping control for orbital stabilization of high-frequency oscillations of the Furuta pendulum. IEEE Transactions on Control Systems Technology, 2009, 17(4): 853-858[15] Zenkov D V, Bloch A M, Marsden J E. Flat nonholonomic matching. In: Proceedings of the American Control Conference. Anchorage, USA: IEEE, 2002. 2812-2817[16] Li Mao-Qing. Stabilization controller design of Pendubot based on controlled Lagrangians. Control and Decision, 2010, 25(5): 663-668(李茂青. 基于受控拉格朗日函数的Pendubot镇定控制器设计. 控制与决策, 2010, 25(5): 663-668)[17] Li Mao-Qing. Control design for planar vertical takeoff-and-landing aircraft based on controlled Lagrangians. Control Theory and Applications, 2010, 27(6): 688-694(李茂青. 基于受控拉格朗日函数的垂直起降飞机控制器设计. 控制理论与应用, 2010, 27(6): 688-694)[18] Reddy C K, Woolsey C A. Energy shaping for vehicles with point mass actuators. In: Proceedings of the American Control Conference. Minneapolis, USA: IEEE, 2006. 4291-4296[19] Bullo F, Lewis A D. Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems. New York: Springer, 2005[20] Marsden J E. Lectures on Mechanics. New York: Cambridge University Press, 1992[21] Khalil H K. Nonlinear Systems (Third Edition). New Jersey: Prentice Hall, 2002[22] Woolsey C A. Energy Shaping and Dissipation: Underwater Vehicle Stabilization Using Internal Rotors [Ph.D. dissertation], Princeton University, USA, 2001[23] Bloch A M, Chang D E, Leonard N E, Marsden J E. Controlled Lagrangians and the stabilization of mechanical systems II: potential shaping. IEEE Transactions on Automatic Control, 2001, 46(10): 1556-1571[24] Wu F, Geng Z Y. Energy shaping for coordinating internally actuated vehicles. Theoretical and Applied Mechanics Letters, 2011, 1(2): 023002.1-023002.5[25] Wu F, Geng Z Y. Stabilization of coordinated motion for underwater vehicles. Acta Mechanica Sinica, 2011, 27(3): 438-444[26] Auckly D, Kapitanski L. On the λ -equations for matching control laws. SIAM Journal on Control and Optimization, 2002, 41(5): 1372-1388[27] Bloch A M, Leonard N E, Marsden J E. Controlled Lagrangians and the stabilization of Euler-Poincare mechanical systems. International Journal on Robust and Nonlinear Control, 2001, 11(1): 191-214[28] Viola G, Ortega R, Banavar R, Acosta J A, Astolfi A. Total energy shaping control of mechanical systems: simplifying the matching equations via coordinate changes. IEEE Transactions on Automatic Control, 2007, 52(6): 1093-1099[29] Li M Q, Huo W. Controller design for mechanical systems with underactuation degree one based on controlled Lagrangians method. International Journal of Control, 2009, 82(9): 1747-1761[30] Chang D E. The method of controlled Lagrangians: energy plus force shaping. In: Proceedings of the 48th IEEE Conference on Decision and Control Held Jointly with the 28th Chinese Control Conference. Shanghai, China, 2009. 3329-3334[31] Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004, 49(9): 1465-1476[32] VanDyke M C, Hall C D. Decentralized coordinated attitude control of a formation of spacecraft. Journal of Guidance, Control and Dynamics, 2006, 29(5): 1101-1109[33] Belta C, Kumar V. Motion generation for formations of robots: a geometric approach. In: Proceedings of the IEEE International Conference on Robotics and Automation. Seoul, Korea: IEEE, 2001. 1245-1250[34] Hanssmann H, Leonard N E, Smith T R. Symmetry and reduction for coordinated rigid bodies. European Journal of Control, 2006, 12(2): 176-194[35] Gharesifard B. A Geometric Approach to Energy Shaping [Ph.D. dissertation], Queen's University, Canada, 2009[36] Chang D E. Stabilizability of controlled Lagrangian systems of two degrees of freedom and one degree of under-actuation by the energy-shaping method. IEEE Transactions on Automatic Control, 2010, 55(8): 1888-1893[37] Woolsey C A, Techy L. Cross-track control of a slender, underactuated AUV using potential shaping. Ocean Engineering, 2009, 36(1): 82-91[38] Bullo F, Murray R M. Tracking for fully actuated mechanical systems: a geometric framework. Automatica, 1999, 35(1): 17-34[39] Bullo F. Nonlinear Control of Mechanical Systems: a Riemannian Geometry Approach [Ph.D. dissertation], California Institute of Technology, USA, 1999[40] Frazzoli E. Robust Hybrid Control for Autonomous Vehicle Motion Planning [Ph.D. dissertation], Massachusetts Institute of Technology, USA, 2001[41] Bhatta P. Nonlinear Stability and Control of Gliding Vehicles [Ph.D. dissertation], Princeton University, USA, 2006[42] Ortega R, Spong M W, Gomez-Estern F, Blankenstein G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control, 2002, 47(8): 1218-1233[43] Ortega R, Canseco E G. Interconnection and damping assignment passivity-based control: a survey. European Journal of Control, 2004, 10(5): 432-450[44] Yu H S, Zou Z W, Tang Y L. Speed control of PMSM based on energy-shaping and PWM signal transformation principle. In: Proceedings of the International Conference on Electrical Machines and Systems. Wuhan, China: IEEE, 2008. 3166-3170[45] Donaire A, Junco S. Energy shaping, interconnection and damping assignment, and integral control in the bond graph domain. Simulation Modelling Practice and Theory, 2009, 17(1): 152-174[46] Batlle C, Doria-Cerezo A, Espinosa-Perez G, Ortega R. Simultaneous interconnection and damping assignment passivity-based control: the induction machine case study. International Journal of Control, 2009, 82(2): 241-255[47] Chang D E. Controlled Lagrangian and Hamiltonian Systems [Ph.D. dissertation], California Institute of Technology, USA, 2002
  • 加载中
计量
  • 文章访问数:  2561
  • HTML全文浏览量:  58
  • PDF下载量:  1436
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-16
  • 修回日期:  2011-10-24
  • 刊出日期:  2012-02-20

目录

    /

    返回文章
    返回