[1]
|
Tao J W,Wang S T,Hu W J,Ying W H. ρ-margin kernel learning machine with magnetic field effect for both binary classification and novelty detection. International Journal of Software and Informatics,2010,4(3):305-324[2] Vapnik V N. The Nature of Statistical Learning Theory. New York:Springer-Verlag,1995. 69-83[3] Wen Chuan-Jun,Zhan Yong-Zhao,Chen Chang-Jun. Maximal-margin minimal-volume hypersphere support vector machine. Control and Decision,2010,25(1):79-83(文传军,詹永照,陈长军. 最大间隔最小体积球形支持向量机. 控制与决策,2010,25(1):79-83)[4] Wu M R,Ye J P. A small sphere and large margin approach for novelty detection using training data with outliers. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(11):2088-2092[5] Scholkopf B,Smola A J,Williamson R C,Bartlett P L. New support vector algorithms. Neural Computation,2000,12(5):1207-1245[6] Shivaswamy P K,Jebara T. Maximum relative margin and data-dependent regularization. Journal of Machine Learning Research,2010,11:747-788[7] Zafeiriou S,Tefas A,Pitas I. Minimum class variance support vector machines. IEEE Transactions on Image Processing,2007,16(10):2551-2564[8] Cai D,He X F,Zhou K,Han J W,Bao H J. Locality sensitive discriminant analysis. In:Proceedings of the 20th International Joint Conference on Artificial Intelligence. Hyderabad,India:IJCAI Press,2007. 708-713[9] He X F,Yan S C,Hu Y X,Niyogi P,Zhang H J. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):328-340[10] Tenenbaum J B,Silva V,Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science,2000,290(5500):2319-2323[11] Belkin M,Niyogi P,Sindhwani V. Manifold regularization:a geometric framework for learning from labeled unlabeled examples. Journal of Machine Learning Research,2006,7:2399-2434[12] Gao Jun,Wang Shi-Tong,Deng Zhao-Hong. Global and local preserving based semi-supervised support vector machine. Acta Electronica Sinica,2010,38(7):1626-1634(皋军,王士同,邓赵红. 基于全局和局部保持的半监督支持向量机. 电子学报,2010,38(7):1626-1634)[13] Wang X M,Chung F L,Wang S T. On minimum class locality preserving variance support vector machine. Pattern Recognition,2010,43(8):2753-2762[14] Wang H X,Chen S,Hu Z L,Zheng W M. Locality-preserved maximum information projection. IEEE Transactions on Neural Networks,2008,19(4):571-585[15] Li H F,Jiang T,Zhang K S. Efficient and robust feature extraction by maximum margin criterion. IEEE Transactions on Neural Networks,2006,17(1):157-165[16] Gao Quan-Xue,Xie De-Yan,Xu Hui,Li Yuan-Zheng,Gao Xi-Quan. Supervised feature extraction based on information fusion of local structure and diversity information. Acta Automatica Sinica,2010,36(8):1107-1114(高全学,谢德燕,徐辉,李远征,高西全. 融合局部结构和差异信息的监督特征提取算法. 自动化学报,2010,36(8):1107-1114)[20] Jun G,Chung F L,Wang S T. Matrix pattern based minimum within-class scatter support vector machines. Applied Soft Computing,2011,11(8):5602-5610[17] Muller K R,Mika S,Ratsch G,Tsuda K,Scholkopf B. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks,2001,12(2):181-201[18] Scholkopf B,Herbrich R,Smola A J. A generalized representer theorem. In:Proceedings of the 14th Annual Conference on Computational Learning Theory and 5th European Conference on Computational Learning Theory. Amsterdam,Netherlands:Springer,2001. 416-426[19] Cai D,He X F,Han J W,Zhang H J. Orthogonal Laplacianfaces for face recognition. IEEE Transactions on Image Processing,2006,15(11):3608-3614
|