2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续非线性系统的滑模鲁棒正不变集控制

傅健 吴庆宪 姜长生 王宇飞

傅健, 吴庆宪, 姜长生, 王宇飞. 连续非线性系统的滑模鲁棒正不变集控制. 自动化学报, 2011, 37(11): 1395-1401. doi: 10.3724/SP.J.1004.2011.01395
引用本文: 傅健, 吴庆宪, 姜长生, 王宇飞. 连续非线性系统的滑模鲁棒正不变集控制. 自动化学报, 2011, 37(11): 1395-1401. doi: 10.3724/SP.J.1004.2011.01395
FU Jian, WU Qing-Xian, JIANG Chang-Sheng, WANG Yu-Fei. Robust Sliding Mode Positively Invariant Set for Nonlinear Continuous System. ACTA AUTOMATICA SINICA, 2011, 37(11): 1395-1401. doi: 10.3724/SP.J.1004.2011.01395
Citation: FU Jian, WU Qing-Xian, JIANG Chang-Sheng, WANG Yu-Fei. Robust Sliding Mode Positively Invariant Set for Nonlinear Continuous System. ACTA AUTOMATICA SINICA, 2011, 37(11): 1395-1401. doi: 10.3724/SP.J.1004.2011.01395

连续非线性系统的滑模鲁棒正不变集控制

doi: 10.3724/SP.J.1004.2011.01395
详细信息
    通讯作者:

    傅健 南京航空航天大学自动化学院博士研究生. 2007年获南京理工大学计算机系学士学位. 主要研究方向为滑模变结构控制和飞行控制.E-mail: fujian1986216@126.com

Robust Sliding Mode Positively Invariant Set for Nonlinear Continuous System

  • 摘要: 针对一类具有控制和状态有界约束的连续非线性系统, 提出了一种基于单向辅助面滑模控制的正不变集设计方法. 该方法通过将约束条件引入单向辅助面的设计中, 利用单向辅助面构造系统状态的正不变集, 以保证系统状态和控制输入在整个过程中都能满足约束条件. 同时, 滑模控制器设计不再受到切换面的限制, 一些不稳定的超平面也可以作为单向辅助面以设计控制器. 随后给出该方法的稳定性分析以及正不变集的理论证明, 并且通过仿真验证了设计方法的有效性.
  • [1] Blanchini F. Set invariance in control. Automatica, 1999, 35(11): 1747-1767[2] Jiang Wei-Hua, Huang Lin, Chu Tian-Guang. Robust positively invariant sets of discrete-time nonlinear and time-variable convex polyhedral system family. Acta Automatica Sinica, 2001, 27(5): 631-636(蒋卫华, 黄琳, 楚天广. 离散非线性时变凸多面体系统族的鲁棒正不变集. 自动化学报, 2001, 27(5): 631-636)[3] Zhou B, Duan G R, Lin Z L. Approximation and monotonicity of the maximal invariant ellipsoid for discrete-time systems by bounded controls. IEEE Transactions on Automatic Control, 2010, 55(2): 440-446[4] Tu Z W, Jian J G. Estimating the ultimate bounds and positively invariant sets for a class of general Lorenz-type new chaotic systems. In: Proceedings of International Workshop on Chaos-Fractals Theories and Applications. Kunming, China: IEEE, 2010. 225-228[5] Wu M, Yan G F, Lin Z Y, Liu M Q. Characterization of backward reachable set and positive invariant set in polytopes. In: Proceedings of American Control Conference. St. Louis, USA: IEEE, 2009. 4351-4356[6] Borrelli F, Vecchio C D, Parisio A. Robust invariant set theory applied to networked buffer-level control. In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 2111-2116[7] Lee Y, Kouvaritakis B. Robust receding horizon predictive control for systems with uncertain dynamics and input saturation. Automatica, 2000, 36(10): 1497-1504[8] Davila J, Poznyak A. Attracting ellipsoid method application to designing of sliding mode controllers. In: Proceedings of the 11th International Workshop on Variable Structure Systems. Mexico City, Mexico: IEEE, 2010. 83-88[9] Zhang L, Zhang Y, Zhang S L, Heng P A. Activity invariant sets and exponentially stable attractors of linear threshold discrete-time recurrent neural networks. IEEE Transactions on Automatic Control, 2009, 54(6): 1341-1347[10] Masubuchi I. Analysis of positive invariance and almost regional attraction via density functions with converse results. IEEE Transactions on Automatic Control, 2007, 52(7): 1329-1333[11] Rakovic S V, Baric M. Parameterized robust control invariant sets for linear systems: theoretical advances and computational remarks. IEEE Transactions on Automatic Control, 2010, 55(7): 1599-1614
  • 加载中
计量
  • 文章访问数:  1868
  • HTML全文浏览量:  57
  • PDF下载量:  1105
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-14
  • 修回日期:  2011-06-05
  • 刊出日期:  2011-11-20

目录

    /

    返回文章
    返回