[1]
|
Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326[2] Zhang Z, Zha H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal of Scientific Computing, 2004, 26(1): 313-338[3] Jolliffe I T. Principal Component Analysis. New York: Springer-Verlag, 1986[4] Wang J, Zhang Z Y, Zha H Y. Adaptive manifold learning. In: Proceedings of the Neural Information Processing Systems. Vancouver, Canada: The MIT Press, 2004. 1473-1480[5] Teh Y W, Roweis S. Automatic alignment of local representations. In: Proceedings of the Neural Information Processing Systems. Vancouver, Canada: The MIT Press, 2002. 841-848[6] Yang L. Alignment of overlapping locally scaled patches for multidimensional scaling and dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 438-450[7] Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6): 1373-1397[8] Donoho D L, Grimes C. Hessian eigenmaps: locally linear embedding, techniques for high-dimensional data. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5591-5596[9] He X F, Niyogi P. Locality preserving projections. In: Proceedings of the Neural Information Processing Systems. Vancouver, Canada: The MIT Press, 2003. 153-160[10] He X F, Cai Deng, Yan S C, Zhang H J. Neighborhood preserving embedding. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 1208-1213[11] Kokiopoulou E, Saad Y. Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(12): 2143-2156[12] Li Le, Zhang Yu-Jin. Linear projection-based non-negative matrix factorization. Acta Automatica Sinica, 2010, 36(1): 23-39(李乐, 章毓晋. 基于线性投影结构的非负矩阵分解. 自动化学报, 2010, 36(1): 23-39)[13] Wen Ying, Shi Peng-Fei. An approach to face recognition based on common vector and 2DPCA. Acta Automatica Sinica, 2009, 35(2): 202-205(文颖, 施鹏飞. 一种基于共同向量结合2DPCA的人脸识别方法. 自动化学报, 2009, 35(2): 202-205)[14] Lin T, Zha H. Riemannian manifold learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(5): 796-809[15] Balasubramanian M, Schwartz E L. The isomap algorithm and topological stability. Science, 2002, 295(5552): 7[16] Silva J G, Marques J S, Lemos J. Selecting landmarks points for sparse manifold learning. In: Proceedings of the Neural Information Processing Systems. Vancouver, Canada: The MIT Press, 2006. 1241-1248[17] Zhang Run-Chu. Multivariate Statistical Analysis. Beijing: Science Press, 2006. 36-44(张润楚. 多元统计分析. 北京: 科学出版社, 2006. 36-44)[18] Cheng Yun-Peng, Zhang Kai-Yuan, Xu Zhong. Matrix Theory. Xi'an: Northwestern Polytechnical University Press, 2006. 124-129(程云鹏, 张凯院, 徐仲. 矩阵论. 西安: 西北工业大学出版社, 2006. 124-129)[19] Golub G H, Luk F, Overton M. A block Lanzcos method for computing the singular values and corresponding singular vectors of a matrix. ACM Transactions on Mathematical Software, 1981, 7(2): 149-169[20] Zhang Xian-Da. Matrix Analysis and Applications. Beijing: Tsinghua University Press, 2004(张贤达. 矩阵分析与应用. 北京: 清华大学出版社, 2004)
|