2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间共线点的单光心反射折射摄像机标定

段福庆 吕科 周明全

段福庆, 吕科, 周明全. 基于空间共线点的单光心反射折射摄像机标定. 自动化学报, 2011, 37(11): 1296-1305. doi: 10.3724/SP.J.1004.2011.01296
引用本文: 段福庆, 吕科, 周明全. 基于空间共线点的单光心反射折射摄像机标定. 自动化学报, 2011, 37(11): 1296-1305. doi: 10.3724/SP.J.1004.2011.01296
DUAN Fu-Qing, LV Ke, ZHOU Ming-Quan. Central Catadioptric Camera Calibration Based on Collinear Space Points. ACTA AUTOMATICA SINICA, 2011, 37(11): 1296-1305. doi: 10.3724/SP.J.1004.2011.01296
Citation: DUAN Fu-Qing, LV Ke, ZHOU Ming-Quan. Central Catadioptric Camera Calibration Based on Collinear Space Points. ACTA AUTOMATICA SINICA, 2011, 37(11): 1296-1305. doi: 10.3724/SP.J.1004.2011.01296

基于空间共线点的单光心反射折射摄像机标定

doi: 10.3724/SP.J.1004.2011.01296
详细信息
    通讯作者:

    段福庆 博士,北京师范大学信息学院副教授.主要研究方向为摄像机标定,模式识别与机器学习. E-mail: fqduan@bnu.edu.cn

Central Catadioptric Camera Calibration Based on Collinear Space Points

  • 摘要: 一条空间直线的单光心反射折射图像是一个二次曲线段, 大多数利用直线进行单光心反射折射摄像机标定的方法都需要对直线的像进行二次曲线拟合, 曲线拟合的精度严重影响着标定的精度. 然而, 一条空间直线的像仅占整个二次曲线的一小段, 这使得曲线拟合的效果非常差. 本文利用空间三个共线点的反射折射投影给出了摄像机内参数的一个非线性约束. 当反射镜面为抛物面时, 在主点已知的情况下, 该约束变为线性约束. 如其他参数已知, 该约束变为关于有效焦距的多项式约束. 由此, 本文提出了三种不同条件下的标定算法, 算法中无需对直线的像进行二次曲线拟合, 无需场景的任何信息, 标定精度较高. 实验验证了算法的有效性.
  • [1] Yagi Y, Yachida M. Real-time omnidirectional image sensors. International Journal of Computer Vision, 2004, 58(3): 173-207[2] Swaminathan R, Grossberg M D, Nayar S. Non-single viewpoint catadioptric cameras: geometry and analysis. International Journal of Computer Vision, 2006, 66(3): 211-229[3] Baker S, Nayer S. A theory of single-viewpoint catadioptric image formation. International Journal of Computer Vision, 1999, 35(2): 175-196[4] Geyer C, Daniilidis K. Catadioptric projective geometry. International Journal of Computer Vision, 2001, 45(3): 223-243[5] Wu Y H, Hu Z Y. Geometric invariants and applications under catadioptric camera model. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 1547-1554[6] Scaramuzza D, Martinelli A, Siegwart R. A flexible technique for accurate omnidirectional camera calibration and structure from motion. In: Proceedings of the IEEE International Conference on Computer Vision Systems. Washington D.C., USA: IEEE, 2006. 45-45[7] Gasparini S, Sturm P, Barreto J. Plane-based calibration of central catadioptric cameras. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 1195-1202[8] Sturm P, Ramalingam S. A generic concept for camera calibration. In: Proceedings of the European Conference on Computer Vision. Prague, Czech Republic: Springer, 2004. 1-13[9] Ramalingam S, Sturm P, Lodha S K. Towards generic self-calibration of central cameras. In: Proceedings of the 6th Workshop on Omnidirectional Vision Camera Networks and Nonclassical Cameras. Beijing, China: IEEE, 2005. 20-27[10] Kang S B. Catadioptric self-calibration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA: IEEE, 2000. 201-207[11] Barreto J P, Araujo H. Geometric properties of central catadioptric line images and their application in calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1327-1333[12] Geyer C, Daniilidis K. Catadioptric camera calibration. In: Proceedings of the IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 398-404[13] Geyer C, Daniilidis K. Para catadioptric camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 687-695[14] Ying X H, Hu Z Y. Catadioptric camera calibration using geometric invariants, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(10): 1260-1271[15] Wu F C, Duan F Q, Hu Z Y, Wu Y H. A new linear algorithm for calibrating central catadioptric cameras. Pattern Recognition, 2008, 41(10): 3166-3172[16] Ying X H, Zha H B. Identical projective geometric properties of central catadioptric line images and sphere images with applications to calibration. International Journal of Computer Vision, 2008, 78(1): 89-105[17] Duan F Q, Wu F C, Hu Z Y. Pose determination and plane measurement using a trapezium. Pattern Recognition Letters, 2008, 29(3): 223-231[18] Deng Xiao-Ming, Wu Fu-Chao, Wu Yi-Hong. An easy calibration method for central catadioptric cameras. Acta Automatica Sinica, 2007, 33(8): 801-808[19] Barreto J P, Araujo H. Fitting conics to paracatadioptric projection of lines. Computer Vision and Image Understanding, 2006, 101(3): 151-165[20] Wu Y H, Li Y F, Hu Z Y, Easy calibration for para-catadioptric-like camera. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006. 5719-5724[21] Ying X H, Zha H B. Simultaneously calibrating catadioptric camera and detecting line features using Hough transform. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada: IEEE, 2005. 412-417[22] Sturm P, Cheng Z L, Chen P C Y, Poo A N. Focal length calibration from two views: method and analysis of singular cases. Computer Vision and Image Understanding, 2005, 99(1): 58-95[23] Fitzgibbon A, Pilu M, Fisher R B. Direct least square fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 476-480
  • 加载中
计量
  • 文章访问数:  2164
  • HTML全文浏览量:  61
  • PDF下载量:  791
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-22
  • 修回日期:  2011-06-05
  • 刊出日期:  2011-11-20

目录

    /

    返回文章
    返回