2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全局孤立性和局部同质性图表示的随机游走显著目标检测算法

胡正平 孟鹏权

胡正平, 孟鹏权. 全局孤立性和局部同质性图表示的随机游走显著目标检测算法. 自动化学报, 2011, 37(10): 1279-1284. doi: 10.3724/SP.J.1004.2011.01279
引用本文: 胡正平, 孟鹏权. 全局孤立性和局部同质性图表示的随机游走显著目标检测算法. 自动化学报, 2011, 37(10): 1279-1284. doi: 10.3724/SP.J.1004.2011.01279
HU Zheng-Ping, MENG Peng-Quan. Graph Presentation Random Walk Salient Object Detection Algorithm Based on Global Isolation and Local Homogeneity. ACTA AUTOMATICA SINICA, 2011, 37(10): 1279-1284. doi: 10.3724/SP.J.1004.2011.01279
Citation: HU Zheng-Ping, MENG Peng-Quan. Graph Presentation Random Walk Salient Object Detection Algorithm Based on Global Isolation and Local Homogeneity. ACTA AUTOMATICA SINICA, 2011, 37(10): 1279-1284. doi: 10.3724/SP.J.1004.2011.01279

全局孤立性和局部同质性图表示的随机游走显著目标检测算法

doi: 10.3724/SP.J.1004.2011.01279

Graph Presentation Random Walk Salient Object Detection Algorithm Based on Global Isolation and Local Homogeneity

  • 摘要: 目前的显著性检测算法主要依赖像素间的相互对比,缺乏对显著目标自身特性的分析理解. 依据显著目标是显眼、紧凑和完整的思路,提出一种基于目标全局孤立性和局部同质性的 随机游走显著目标检测算法,将视觉显著性检测公式化为马尔科夫随机游走问题. 首先将输入图像进行分块,根据像素块之间颜色特征和方向特征的相似性确定边的权重, 从而构建图模型;然后通过全连通图搜索提取全局特性,突出全局较孤立的区域; 同时通过k-regular图搜索提取局部特性,增强局部较均匀的区域;最后将全局特性和局部 特性相结合得到显著图,进而确定感兴趣区域位置. 实验结果表明,相比于其他两种具有代表性的算法,所提方法检测结果更加准确、合理, 证明该算法切实可行.
  • [1] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259[2] Walther D, Koch C. Modeling attention to salient proto-objects. Neural Networks, 2006, 19(9): 1395-1407[3] Li Q, Wang S Z, Zhang X P. Hierarchical identification of visually salient image regions. In: Proceedings of the International Conference on Audio, Language and Image Processing. Shanghai, China: IEEE, 2008. 1708-1712[4] Zhang Jing, Shen Lan-Sun, Gao Jing-Jing. Region of interest detection based on visual attention model and evolutionary programming. Journal of Electronics and Information Technology, 2009, 31(7): 1646-1652(张菁, 沈兰荪, 高静静. 基于视觉注意模型和进化规划的感兴趣区检测方法. 电子与信息学报, 2009, 31(7): 1646-1652)[5] Hou X D, Zhang L Q. Saliency detection: a spectral residual approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8[6] Guo C L, Ma Q, Zhang L M. Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform. In: Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8[7] Guo C L, Zhang L M. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Transactions on Image Processing, 2010, 19(1): 185-198[8] Xu Yuan-Nan, Zhao Yuan, Liu Li-Ping, Zhang Yu, Sun Xiu-Dong. Target detection of saliency map based on pseudo Wigner-Ville distribution and Renyi entropy. Acta Physica Sinica, 2010, 59(2): 980-988(许元男, 赵远, 刘丽萍, 张宇, 孙秀冬. 基于伪Wigner-Ville分布和Renyi熵的显著图目标检测. 物理学报, 2010, 59(2): 980-988)[9] Gopalakrishnan V, Hu Y Q, Rajan D. Salient region detection by modeling distributions of color and orientation. IEEE Transactions on Multimedia, 2009, 11(5): 892-905[10] Zhang W, Wu Q M J, Wang G H, Yin H B. An adaptive computational model for salient object detection. IEEE Transactions on Multimedia, 2010, 12(4): 300-316[11] Wang Xiang-Yang, Yang Hong-Ying, Zheng Hong-Liang, Wu Jun-Feng. A color block-histogram image retrieval based on visual weight. Acta Automatica Sinica, 2010, 36(10): 1489-1492(王向阳, 杨红颖, 郑宏亮, 吴俊峰. 基于视觉权值的分块颜色直方图图像检索算法. 自动化学报, 2010, 36(10): 1489-1492)[12] Harel J, Koch C, Perona P. Graph-based visual saliency. In: Proceedings of the Neural Information Processing Systems. Vancouver, Canada: The MIT Press, 2006. 545-552[13] Gopalakrishnan V, Hu Y Q, Rajan D. Random walks on graphs to model saliency in images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1698-1705[14] Gao D S, Han S, Vasconcelos N. Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(6): 989-1005[15] Borji A, Ahmadabadi M N, Araabi B N, Hamidi M. Online learning of task-driven object-based visual attention control. Image and Vision Computing, 2010, 28(7): 1130-1145
  • 加载中
计量
  • 文章访问数:  2424
  • HTML全文浏览量:  76
  • PDF下载量:  1081
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-17
  • 修回日期:  2011-05-28
  • 刊出日期:  2011-10-20

目录

    /

    返回文章
    返回