2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最近邻链的车牌检测算法

苗立刚

苗立刚. 基于最近邻链的车牌检测算法. 自动化学报, 2011, 37(10): 1272-1278. doi: 10.3724/SP.J.1004.2011.01272
引用本文: 苗立刚. 基于最近邻链的车牌检测算法. 自动化学报, 2011, 37(10): 1272-1278. doi: 10.3724/SP.J.1004.2011.01272
MIAO Li-Gang. License Plate Detection Algorithm Based on Nearest Neighbor Chains. ACTA AUTOMATICA SINICA, 2011, 37(10): 1272-1278. doi: 10.3724/SP.J.1004.2011.01272
Citation: MIAO Li-Gang. License Plate Detection Algorithm Based on Nearest Neighbor Chains. ACTA AUTOMATICA SINICA, 2011, 37(10): 1272-1278. doi: 10.3724/SP.J.1004.2011.01272

基于最近邻链的车牌检测算法

doi: 10.3724/SP.J.1004.2011.01272

License Plate Detection Algorithm Based on Nearest Neighbor Chains

  • 摘要: 根据车牌字符的几何特征和空间排列规则,提出了一种基于最近邻链的自适应车牌检测算法. 首先,采用自适应阈值分割算法消除光照变化的影响,并采用连通体分析方法消除部分干扰目标; 其次,根据车牌字符连通体的区域特征,将宽度和高度都相近的连通体构造为最近邻连通体对, 并将最近邻对连接为最近邻链,从而检测出所有可能的车牌区域; 最后,利用两组不同长度的方波模板分别对车牌的水平和竖直投影进行匹配, 它能够验证候选车牌区域的有效性,并求解所有车牌字符的最佳切分位置. 实验表明,该算法能够自适应地处理光照不均匀、尺度变化、透视失真、背景干扰以及质量退化等因素的影响, 可以有效地检测出复杂背景中的车牌区域.
  • [1] Anagnostopoulos C E, Anagnostopoulos I E, Psoroulas I D, Loumos V, Kayafas E. License plate recognition from still images and video sequences: a survey. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(3): 377-391[2] Jiao J B, Ye Q X, Huang Q M. A configurable method for multi-style license plate recognition. Pattern Recognition, 2009, 42(3): 358-369[3] Bai H L, Liu C P. A hybrid license plate extraction method based on edge statistics and morphology. In: Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE, 2004. 831-834[4] Zheng D, Zhao Y, Wang J. An efficient method of license plate location. Pattern Recognition Letters, 2005, 26(15): 2431-2438[5] Shapiro V, Gluhchev G, Dimov D. Towards a multinational car license plate recognition system. Machine Vision and Applications, 2006, 17(3): 173-183[6] Shi X, Zhao W, Shen Y. Automatic license plate recognition system based on color image processing. In: Proceedings of the International Conference on Computational Science and Its Applications. Berlin, Germany: Springer-Verlag, 2005. 1159-1168[7] Wang F, Man L, Wang B P, Xiao Y J, Pan W, Lu X C. Fuzzy-based algorithm for color recognition of license plates. Pattern Recognition Letters, 2008, 29(7): 1007-1020[8] Jia W J, Zhang H F, He X J. Region-based license plate detection. Journal of Network and Computer Applications, 2007, 30(4): 1324-1333[9] Chang S L, Chen L S, Chung Y C, Chen S W. Automatic license plate recognition. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(1): 42-53[10] Kim K I, Jung K, Kim J H. Color texture-based object detection: an application to license plate localization. In: Proceedings of the 1st International Workshop on Pattern Recognition with Support Vector Machines. London, UK: Springer-Verlag, 2002. 293-309[11] Cui D, Gu D B, Cai H, Sun J X. License plate detection algorithm based on gentle AdaBoost algorithm with a cascade structure. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics. Guilin, China: IEEE, 2009. 1962-1966[12] Arth C, Limberger F, Bischof L. Real-time license plate recognition on an embedded DSP-platform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8[13] Zhang H, Jia W, He X, Wu Q. Learning-based license plate detection using global and local features. In: Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006. 1102-1105[14] Kahraman F, Kurt B, Gokmen M. License plate character segmentation based on the Gabor transform and vector quantization. In: Proceedings of the 18th International Symposium on Computer and Information Sciences. Antalya, Turkey: Springer, 2003. 381-388[15] Abolghasemi V, Ahmadyfard A. An edge-based color-aided method for license plate detection. Image and Vision Computing, 2009, 27(8): 1134-1142[16] Liu Wan-Jun, Jiang Qing-Ling, Zhang Chuang. A novel approach for vehicle license plate locating based on CNN color image edge detection. Acta Automatica Sinica, 2009, 35(12): 1503-1512(刘万军, 姜庆玲, 张闯. 基于CNN彩色图像边缘检测的车牌定位方法. 自动化学报, 2009, 35(12): 1503-1512)[17] Niblack W. An Introduction to Digital Image Processing. Englewood Cliffs: Prentice-Hall, 1986. 115-116[18] Hashizume A, Yeh P S, Rosenfeld A. A method of detecting the orientation of aligned components. Pattern Recognition Letters, 1986, 4: 125-132[19] Lu Y, Tan C L. A nearest-neighbor chain based approach to skew estimation in document images. Pattern Recognition Letters, 2003, 24(14): 2315-2323
  • 加载中
计量
  • 文章访问数:  2229
  • HTML全文浏览量:  39
  • PDF下载量:  1143
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-13
  • 修回日期:  2011-03-13
  • 刊出日期:  2011-10-20

目录

    /

    返回文章
    返回