2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀杂波环境下基于贝叶斯方法的自适应检测

周宇 张林让 刘昕 刘楠

周宇, 张林让, 刘昕, 刘楠. 非均匀杂波环境下基于贝叶斯方法的自适应检测. 自动化学报, 2011, 37(10): 1206-1212. doi: 10.3724/SP.J.1004.2011.01206
引用本文: 周宇, 张林让, 刘昕, 刘楠. 非均匀杂波环境下基于贝叶斯方法的自适应检测. 自动化学报, 2011, 37(10): 1206-1212. doi: 10.3724/SP.J.1004.2011.01206
ZHOU Yu, ZHANG Lin-Rang, LIU Xin, LIU Nan. Adaptive Detection Based on Bayesian Approach in Heterogeneous Environments. ACTA AUTOMATICA SINICA, 2011, 37(10): 1206-1212. doi: 10.3724/SP.J.1004.2011.01206
Citation: ZHOU Yu, ZHANG Lin-Rang, LIU Xin, LIU Nan. Adaptive Detection Based on Bayesian Approach in Heterogeneous Environments. ACTA AUTOMATICA SINICA, 2011, 37(10): 1206-1212. doi: 10.3724/SP.J.1004.2011.01206

非均匀杂波环境下基于贝叶斯方法的自适应检测

doi: 10.3724/SP.J.1004.2011.01206
详细信息
    通讯作者:

    周宇 西安电子科技大学雷达信号处理国防科技重点实验室博士研究生. 主要研究方向为阵列信号处理、自适应信号处理和认知雷达. E-mail: zhouyu@mail.xidian.edu.cn

Adaptive Detection Based on Bayesian Approach in Heterogeneous Environments

  • 摘要: 对于非均匀杂波环境下信号自适应检测问题,由于待测数据样本的协方差矩阵与训练数据的协方差矩阵不相同,造成检测性能下降, 针对此问题本文提出了基于贝叶斯方法的广义似然比检测器(Bayesian generalized likelihood ratio test, B-GLRT). 通过对非均匀杂波环境下协方差矩阵间的关系进行统计建模,使在B-GLRT的设计过程中能够结合杂波的非均匀性, 并且这种非均匀性在统计模型中可以通过标量参数调节.同时通过对协方差矩阵选择合适的先验分布, 使B-GLRT能够融合有助于提高检测性能的先验知识. 通过仿真实验,验证了B-GLRT的检测性能高于传统的非贝叶斯检测器,并且分析了杂波环境非均匀性和先验信息对自适应检测性能的影响.
  • [1] Kelly E J. An adaptive detection algorithm. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(2): 115-127[2] Robey F C, Fuhrmann D R, Nitzberg R. A CFAR adaptive matched filter detector. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216[3] Maio A D, Kay S M, Farina A. On the invariance, coincidence, and statistical equivalence of the GLRT, Rao test, and Wald test. IEEE Transactions on Signal Processing, 2010, 58(4): 1967-1979[4] Melvin W L. Space-time adaptive radar performance in heterogeneous clutter. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 621-633[5] Rangaswamy M, Michels J H, Himed B. Statistical analysis of the non-homogeneity detector for STAP applications. Digital Signal Processing, 2004, 14(3): 253-267[6] Maio A D, Iommelli S. Coincidence of the Rao test, Wald test, and GLRT in partially homogeneous environment. IEEE Signal Processing Letters, 2008, 15: 385-388[7] Casillo M, Maio A D, Iommelli S, Landi L. A persymmetric GLRT for adaptive detection in partially-homogeneous environment. IEEE Signal Processing Letters, 2007, 14(12): 1016-1019[8] Kraut S, Scharf L L, McWhorter L T. Adaptive subspace detectors. IEEE Transactions on Signal Processing, 2001, 49(1): 1-16[9] Bidon S, Besson O, Tourneret, J Y. A Bayesian approach to adaptive detection in nonhomogeneous environments. IEEE Transactions on Signal Processing, 2008, 56(1): 205-217[10] Bidon S, Besson O, Tourneret J Y. Characterization of clutter heterogeneity and estimation of its covariance matrix. In: Proceedings of the IEEE Radar Conference. Rome, Italy: IEEE, 2008. 1-6[11] Wang P, Li H B, Himed B. A Bayesian parametric test for multichannel adaptive signal detection in nonhomogeneous environments. IEEE Signal Processing Letters, 2010, 17(4): 351-354[12] Dai Ru-Wei, Zhang Lei-Ming. The creation and development of noetic (cognitive) science in China. Acta Automatica Sinica, 2010, 36(2): 193-198(戴汝为, 张雷鸣. 思维(认知)科学在中国的创新与发展. 自动化学报, 2010, 36(2): 193-198)[13] Guerci J R, Baranoski E J. Knowledge-aided adaptive radar at DARPA: an overview. IEEE Signal Processing Magazine, 2006, 23(1): 41-50[14] Maio A D, Farina A, Foglia, G. Knowledge-aided Bayesian radar detectors and their application to live data. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 170-183[15] Tague J A, Caldwell C I. Expectations of useful complex Wishart forms. Multidimensional Systems and Signal Processing, 1994, 5(3): 263-279[16] Melvin W L, Showman G A. An approach to knowledge-aided covariance estimation. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1021-1042[17] Zhao Lin, Wang Xiao-Xu, Sun Ming, Ding Ji-Cheng, Yan Chao. Adaptive UKF filtering algorithm based on maximum a posterior estimation and exponential weighting. Acta Automatica Sinica, 2010, 36(7): 1007-1019(赵琳, 王晓旭, 孙明, 丁继成, 闫超. 基于极大后验估计和指数加权的自适应UKF滤波算法. 自动化学报, 2010, 36(7): 1007-1019)
  • 加载中
计量
  • 文章访问数:  1913
  • HTML全文浏览量:  90
  • PDF下载量:  1113
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-17
  • 修回日期:  2011-03-03
  • 刊出日期:  2011-10-20

目录

    /

    返回文章
    返回