2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于 GaborSIFT+NNScSPM 图像特征抽取算法研究

江爱文 王春恒 肖柏华

江爱文, 王春恒, 肖柏华. 基于 GaborSIFT+NNScSPM 图像特征抽取算法研究. 自动化学报, 2011, 37(10): 1183-1189. doi: 10.3724/SP.J.1004.2011.01183
引用本文: 江爱文, 王春恒, 肖柏华. 基于 GaborSIFT+NNScSPM 图像特征抽取算法研究. 自动化学报, 2011, 37(10): 1183-1189. doi: 10.3724/SP.J.1004.2011.01183
JIANG Ai-Wen, WANG Chun-Heng, XIAO Bai-Hua. An Image Feature Extraction Method Based on GaborSIFT+NNScSPM. ACTA AUTOMATICA SINICA, 2011, 37(10): 1183-1189. doi: 10.3724/SP.J.1004.2011.01183
Citation: JIANG Ai-Wen, WANG Chun-Heng, XIAO Bai-Hua. An Image Feature Extraction Method Based on GaborSIFT+NNScSPM. ACTA AUTOMATICA SINICA, 2011, 37(10): 1183-1189. doi: 10.3724/SP.J.1004.2011.01183

基于 GaborSIFT+NNScSPM 图像特征抽取算法研究

doi: 10.3724/SP.J.1004.2011.01183
详细信息
    通讯作者:

    江爱文 江西师范大学计算机与信息工程学院讲师. 2010年获中国科学院自动化研究所博士学位. 主要研究方向为图像处理与模式识别. E-mail: aiwen.jiang@ia.ac.cn

An Image Feature Extraction Method Based on GaborSIFT+NNScSPM

  • 摘要: 视觉信息的特征表示是计算机视觉场景图像理解研究中的核心内容. 基于GaborSIFT+NNScSPM的图像特征抽取算法,借鉴生物视觉机制中的相关 研究成果,有机结合了HMAX层次计算模型的思想和非负稀疏编码的策略, 较为合理地模拟了生物视觉皮层中视觉处理的过程.在15类场景图 像和Caltech101两个公开数据集上进行了实验验证, 实验结果表明我们所提出的算法较同期算法有着良好的分类性能.
  • [1] Vailaya A, Figueiredo M A T, Jain A K, Zhang H J. Image classification for content-based indexing. IEEE Transactions on Image Processing, 2001, 10(1): 117-130[2] Chang E, Goh K, Sychay G, Wu G. CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(1): 26-38[3] Szummer M, Picard R W. Indoor-outdoor image classification. In: Proceedings of International Workshop on Content-Based Access of Image and Video Database. Bombay, India: IEEE. 1998. 42-51[4] Serrano N, Savakis A E, Luo J B. Improved scene classification using efficient low-level features and semantic cues. Pattern Recognition, 2004, 37(9): 1773-1784[5] Fan J P, Gao Y L, Luo H Z, Xu G Y. Statistical modeling and conceptualization of natural images. Pattern Recognition, 2005, 38(6): 865-885[6] Luo J B, Savakis A E, Singhal A. A Bayesian network-based framework for semantic image understanding. Pattern Recognition, 2005, 38(6): 919-934[7] Vogel J, Schiele B. Semantic modeling of natural scenes for content-based image retrieval. International Journal of Computer Vision, 2007, 72(2): 133-157[8] Li F F, Perona P. A Bayesian hierarchical model for learning natural scene categories. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA: IEEE. 2005. 524-531[9] Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, NewYork, USA: IEEE, 2006. 2169-2178[10] Quelhas P, Monay F, Odobez J M, Gatica-Perez D, Tuytelaars T. A thousand words in a scene. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9): 1575-1589[11] Oliva A, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision, 2001, 42(3): 145-175[12] Hubel D H, Wiesel T N. Receptive fields of single neurones in the cat's striate cortex. The Journal of Physiology, 1959, 148(3): 574-591[13] Oliva A, Torralba A. Building the gist of a scene: the role of global image features in recognition. Progress in Brain Research, 2006, 155(1): 23-36[14] Li F F, Van Rullen R, Koch C, Perona P. Rapid natural scene categorization in the near absence of attention. Proceedings of the National Academy of Sciences, 2002, 99(14): 9596-9601[15] Poggio T, Riesenhuber M. Hierarchical models of object recognition in cortex. Nature Neuroscience, 1999, 2(11): 1019-1025[16] Serre T, Wolf T, Bileschi S, Riesenhuber X, Poggio T. Robust object recognition with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 411-426[17] Mutch J, Lowe D G. Object class recognition and localization using sparse features with limited receptive fields. International Journal of Computer Vision, 2008, 80(1): 45-57[18] Olshausen B A, Field D J. How close are we to understanding V1? Neural Computation, 2005, 17(8): 1665-1699[19] Carandini M, Demb J B, Mante V, Toullhurst D J, Dan Y, Olshausen B A, Gallant J L, Rust N C. Do we know what the early visual system does? Journal of Neuroscience, 2005, 25(46): 10577-10597[20] Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609[21] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401(6755): 788-791[22] Hoyer P O. Modeling receptive fields with non-negative sparse coding. Neurocomputing, 2003, 52-54(1): 547-552[23] Yang J C, Yu K, Gong Y H, Huang T. Linear spatial pyramid matching using sparse coding for image classification. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, USA: IEEE. 2009. 1794-1801[24] Jiang A W, Wang C H, Xiao B H. A new biologically inspired feature for scene image classification. In: Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey: IEEE, 2010. 758-761[25] Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110
  • 加载中
计量
  • 文章访问数:  1978
  • HTML全文浏览量:  55
  • PDF下载量:  1018
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-15
  • 修回日期:  2011-05-17
  • 刊出日期:  2011-10-20

目录

    /

    返回文章
    返回