2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加权型曲率保持 PDE 图像滤波方法

郑钰辉 张建伟 陈允杰 孙权森

郑钰辉, 张建伟, 陈允杰, 孙权森. 加权型曲率保持 PDE 图像滤波方法. 自动化学报, 2011, 37(10): 1175-1182. doi: 10.3724/SP.J.1004.2011.01175
引用本文: 郑钰辉, 张建伟, 陈允杰, 孙权森. 加权型曲率保持 PDE 图像滤波方法. 自动化学报, 2011, 37(10): 1175-1182. doi: 10.3724/SP.J.1004.2011.01175
ZHENG Yu-Hui, ZHANG Jian-Wei, CHEN Yun-Jie, SUN Quan-Sen. Weighted Curvature-preserving PDE Based Image Regularization Method. ACTA AUTOMATICA SINICA, 2011, 37(10): 1175-1182. doi: 10.3724/SP.J.1004.2011.01175
Citation: ZHENG Yu-Hui, ZHANG Jian-Wei, CHEN Yun-Jie, SUN Quan-Sen. Weighted Curvature-preserving PDE Based Image Regularization Method. ACTA AUTOMATICA SINICA, 2011, 37(10): 1175-1182. doi: 10.3724/SP.J.1004.2011.01175

加权型曲率保持 PDE 图像滤波方法

doi: 10.3724/SP.J.1004.2011.01175
详细信息
    通讯作者:

    郑钰辉 南京信息工程大学计算机与软件学院讲师. 主要研究方向为图像处理、模式识别和遥感图像复原. E-mail: zhengule_yuhui@nuist.edu.cn

Weighted Curvature-preserving PDE Based Image Regularization Method

  • 摘要: 提出了一种加权型曲率保持偏微分方程(Partial differential equation, PDE)滤波方法.传统曲率保持PDE 滤波方法未考虑各积分曲线可能经历不同的图像结构,如此影响了其对图像边缘的保持能力.在此基础上, 利用局部图像方向信息为不同积分曲线设计了相应的权重,得到了一种张量驱动的加权型曲率保持PDE滤波方法. 实验结果表明该方法在滤波的同时能较好地保持图像中边缘与曲率结构,且对图像具有一定增强能力.
  • [1] Lou Y F, Zhang X Q, Osher S, Bertozzi A. Image recovery via nonlocal operators. Journal of Scientific Computing, 2010, 42(2): 185-197[2] Peyre G, Bougleux S, Cohen L. Non-local regularization of inverse problems. In: Proceedings of the 10th European Conference on Computer Vision. Berlin, Germany: Springer-Verlag, 2008. 57-68[3] Sun Yu-Bao, Fei Xuan, Wei Zhi-Hui, Xiao Liang. Image restoration model under Poisson noise using sparse representations and split Bregman iteration algorithm. Acta Automatica Sinica, 2010, 36(11): 1512-1519(孙玉宝, 费选, 韦志辉, 肖亮. 稀疏性正则化的图像泊松恢复模型及分裂Bregman迭代算法. 自动化学报, 2010, 36(11): 1512-1519)[4] Zeng T, Ng M K. On the total variation dictionary model. IEEE Transactions on Image Processing, 2010, 19(3): 821-825[5] Rodriguez P, Wohlberg B. Efficient minimization method for a generalized total variation functional. IEEE Transactions on Image Processing, 2009, 18(2): 322-332[6] Didas S, Setzer S, Steidl G. Combined L2 data and gradient fitting in conjunction with L_1 regularization. Advances in Computational Mathematics, 2009, 30(1): 79-99[7] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Recognition and Machine Intelligence, 1990, 12(7): 629-639[8] Weickert J, Schnorr C. A theoretical framework for convex regularizers in PDE-based computation of image motion. International Journal of Computer Vision, 2001, 45(3): 245-264[9] Tschumperle D, Deriche R. Vector-valued image regularization with PDEs: a common framework for different applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(4): 506-517[10] Tschumperle D. Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE's. International Journal of Computer Vision, 2006, 68(1): 65-82[11] Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2005. 60-65[12] Azzabou N, Paragions N, Guichard F. Image denoising based on adapted dictionary computation. In: Proceedings of the IEEE International Conference on Image Processing. San Antonio, USA: IEEE, 2007. 109-112
  • 加载中
计量
  • 文章访问数:  2401
  • HTML全文浏览量:  38
  • PDF下载量:  1009
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-22
  • 修回日期:  2011-04-09
  • 刊出日期:  2011-10-20

目录

    /

    返回文章
    返回