2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于张量和洛仑兹几何的降维方法

唐科威 刘日升 杜慧 苏志勋

唐科威, 刘日升, 杜慧, 苏志勋. 一种基于张量和洛仑兹几何的降维方法. 自动化学报, 2011, 37(9): 1151-1156. doi: 10.3724/SP.J.1004.2011.01151
引用本文: 唐科威, 刘日升, 杜慧, 苏志勋. 一种基于张量和洛仑兹几何的降维方法. 自动化学报, 2011, 37(9): 1151-1156. doi: 10.3724/SP.J.1004.2011.01151
TANG Ke-Wei, LIU Ri-Sheng, DU Hui, SU Zhi-Xun. A Novel Dimensionality Reduction Method Based on Tensor and Lorentzian Geometry. ACTA AUTOMATICA SINICA, 2011, 37(9): 1151-1156. doi: 10.3724/SP.J.1004.2011.01151
Citation: TANG Ke-Wei, LIU Ri-Sheng, DU Hui, SU Zhi-Xun. A Novel Dimensionality Reduction Method Based on Tensor and Lorentzian Geometry. ACTA AUTOMATICA SINICA, 2011, 37(9): 1151-1156. doi: 10.3724/SP.J.1004.2011.01151

一种基于张量和洛仑兹几何的降维方法

doi: 10.3724/SP.J.1004.2011.01151
详细信息
    通讯作者:

    苏志勋 大连理工大学数学科学学院教授.1987年获得吉林大学数学系学士学位,1990年获得南开大学计算机系硕士学位,1993年获得大连理工大学数学科学学院博士学位.主要研究方向为计算机图形学,图像处理,计算几何和计算机视觉等.E-mail:zxsu@gmail.com

A Novel Dimensionality Reduction Method Based on Tensor and Lorentzian Geometry

  • 摘要: 统的基于向量的降维算法,将大小为m×n的灰度图像,作为Rm×n中的向量进行处理.但这种表示方法往往造成图像像素空间局部信息的丢失,因此不能很好地描述图像的结构信息.本质上,灰度图像可以看成是一个二阶张量,而图像的各种特征(如Gabor和LBP特征等)往往需要用更高阶的张量来描述.本文从图像特征的张量表示出发,将新近提出的洛仑兹投影判别法(Lorentziandiscriminant projection, LDP)推广到张量空间中,提出张量LDP.对于灰度图像,该方法直接利用图像的灰度矩阵(二阶张量)进行运算,从而很好地保持了图像像素的局部结构信息.另外,该方法还可以自然地推广到高维张量空间来处理更复杂的图像特征,如Gabor和LBP特征等.经人脸和纹理识别实验的验证,该算法效率高且能达到较高的识别率.
  • [1] Yang Jian, Yang Jing-Yu, Ye Hui. Theory of Fisher linear discriminant analysis and its application. Acta Automatica Sinica, 2003, 29(4): 481-493(杨健, 杨静宇, 叶晖. Fisher线性鉴别分析的理论研究及其应用. 自动化学报, 2003, 29(4): 481-493)[2] Su Zhi-Xun, Liu Yan-Yan, Liu Xiu-Ping, Zhou Xiao-Jie. Image feature extraction and recognition based on fuzzy CCA. Computer Engineering, 2007, 33(16): 144-146(苏志勋, 刘艳艳, 刘秀平, 周晓杰. 基于模糊CCA的图像特征提取和识别. 计算机工程, 2007, 33(16): 144-146)[3] Turk M A, Pentland A P. Face recognition using eigenfaces. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Maui, USA: IEEE, 1991. 586-591[4] Belhumeur P N, Hespanha J P, Kriegman D J. Eigenface vs. Fisher-faces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720[5] He X, Yan S, Hu Y, Niyogi P, Zhang H. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340[6] Li H, Jiang T, Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Transactions on Neural Networks, 2003, 17(1): 157-165[7] Wu Xiu-Yong, Xu Ke, Xu Jin-Wu. Automatic recognition method of surface defects based on Gabor wavelet and kernel locality preserving projections. Acta Automatica Sinica, 2010, 36(3): 438-441(吴秀永, 徐科, 徐金梧. 基于Gabor小波和核保局投影算法的表面缺陷自动识别方法. 自动化学报, 2010, 36(3): 438-441)[8] Li Le, Zhang Yu-Jin. Linear projection-based non-negative matrix factorization. Acta Automatica Sinica, 2010, 36(1): 23-39(李乐, 章毓晋. 基于线性投影结构的非负矩阵分解. 自动化学报, 2010, 36(1): 23-39)[9] Wu Feng, Zhong Yan, Wu Quan-Yuan. Online classification framework for data stream based on incremental kernel principal component analysis. Acta Automatica Sinica, 2010, 36(4): 534-542(吴枫, 仲妍, 吴泉源. 基于增量核主成分分析的数据流在线分类框架. 自动化学报, 2010, 36(4): 534-542)[10] Liu Bo, Zhang Hong-Bin. A manifold unfolding method based on boundary constraints. Acta Automatica Sinica, 2010, 36(4): 488-498(刘波, 张鸿宾. 一种基于边界约束的流形展开方法. 自动化学报, 2010, 36(4): 488-498)[11] Wang Lei, Zou Bei-Ji, Peng Xiao-Ning. Tunneled latent variables method for facial action unit tracking. Acta Automatica Sinica, 2009, 35(2): 198-201(王磊, 邹北骥, 彭小宁. 针对表情动作单元跟踪的隧道隐变量法. 自动化学报, 2009, 35(2): 198-201)[12] Zhang W, Lin Z, Tang X. Learning semi-riemannian metrics for semisupervised feature extraction. IEEE Transactions on Knowledge Discovery and Engineering, 2011, 23(4): 600-611[13] Cai D, He X, Han J. Subspace Learning Based on Tensor Analysis, Technical Report No. UIUCDCS-R-2005-2572, Department of Computer Science, University of Illinois at Urbana-Champaign, USA, 2005[14] He X, Cai D, Niyogi P. Tensor subspace analysis. Advances in Neural Information Processing Systems. Massachusetts: The MIT Press, 2005[15] Yan S, Xu D, Yang Q, Zhang L, Tang X, Zhang H. Discriminant analysis with tensor representation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2005. 526-532[16] Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51[17] Liu R, Su Z, Lin Z, Hou X. Lorentzian discriminant projection and its applications. In: Proceedings of the 9th Asian Conference on Computer Vision. Xi'an, China: Springer, 2009. 311-320[18] O'Neill B. Semi-riemannian Geometry with Applications to Relativity. New York: Academic Press, 1983[19] Lathauwer L, Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 2000, 21(4): 1253-1278[20] Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987
  • 加载中
计量
  • 文章访问数:  2391
  • HTML全文浏览量:  37
  • PDF下载量:  1022
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-04
  • 修回日期:  2011-03-22
  • 刊出日期:  2011-09-20

目录

    /

    返回文章
    返回