2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Voronoi地图表示方法的同步定位与地图创建

郭帅 马书根 李斌 王明辉 王越超

郭帅, 马书根, 李斌, 王明辉, 王越超. 基于Voronoi地图表示方法的同步定位与地图创建. 自动化学报, 2011, 37(9): 1095-1104. doi: 10.3724/SP.J.1004.2011.01095
引用本文: 郭帅, 马书根, 李斌, 王明辉, 王越超. 基于Voronoi地图表示方法的同步定位与地图创建. 自动化学报, 2011, 37(9): 1095-1104. doi: 10.3724/SP.J.1004.2011.01095
GUO Shuai, MA Shu-Gen, LI Bin, WANG Ming-Hui, WANG Yue-Chao. Simultaneous Localization and Mapping Through a Voronoi-diagram-based Map Representation. ACTA AUTOMATICA SINICA, 2011, 37(9): 1095-1104. doi: 10.3724/SP.J.1004.2011.01095
Citation: GUO Shuai, MA Shu-Gen, LI Bin, WANG Ming-Hui, WANG Yue-Chao. Simultaneous Localization and Mapping Through a Voronoi-diagram-based Map Representation. ACTA AUTOMATICA SINICA, 2011, 37(9): 1095-1104. doi: 10.3724/SP.J.1004.2011.01095

基于Voronoi地图表示方法的同步定位与地图创建

doi: 10.3724/SP.J.1004.2011.01095
详细信息
    通讯作者:

    郭帅 中国科学院沈阳自动化研究所博士研究生. 主要研究方向为移动机器人及机器人同步定位与地图创建. E-mail: guoshuai@sia.cn

Simultaneous Localization and Mapping Through a Voronoi-diagram-based Map Representation

  • 摘要: 针对基于混合米制地图机器人同步定位与地图创建 (Simultaneous localization and mapping, SLAM)中地图划分方法不完善的问题, 提出了基于Voronoi地图表示方法的同步定位与地图创建算法VorSLAM. 该算法在全局坐标系下创建特征地图, 并根据此特征地图使用Voronoi图唯一地划分地图空间, 在每一个划分内部创建一个相对于特征的局部稠密地图. 特征地图与各个局部地图最终一起连续稠密地描述了环境. Voronoi地图表示方法解决了地图划分的唯一性问题, 理论证明局部地图可以完整描述该划分所对应的环境轮廓. 该地图表示方法一个基本特点是特征与局部地图一一对应, 每个特征都关联一个定义在该特征上的局部地图. 基于该特点, 提出了一个基于形状匹配的数据关联算法, 用以解决传统数据关联算法出现的多重关联问题. 一个公寓弧形走廊的实验验证了VorSLAM算法和基于形状匹配的数据关联方法的有效性.
  • [1] Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: part I. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-110[2] Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM): part II. IEEE Robotics Automation Magazine, 2006, 13(3): 108-117[3] Smith R, Self M, Cheeseman P. A stochastic map for uncertain spatial relationships. In: Proceedings of the 4th International Symposium on Robotics Research. Massachusetts, USA: The MIT Press, 1988. 467-474[4] Thrun S, Liu Y F, Koller D, Ng A Y, Ghahramani Z, Durrant-Whyte H. Simultaneous localization and mapping with sparse extended information filters. The International Journal of Robotics Research, 2004, 23(7-8): 693-716[5] Guivant J E, Nebot E M. Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Transactions on Robotics and Automation, 2001, 17(3): 242-257[6] Montemerlo M, Thrun S, Koller D, Wegbreit B. FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proceedings of the 18th National Conference on Artificial Intelligence. Edmonton, Canada: AAAI, 2002. 593-598[7] Montemerlo M, Thrun S, Koller D, Wegbreit B. FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: Proceedings of the International Joint Conference on Artificial Intelligence. Acapulco, Mexico: Morgan Kaufmann, 2003. 1151-1156[8] Zhu Ji-Hua, Zheng Nan-Ning, Yuan Ze-Jian, Zhang Qiang. A SLAM algorithm based on central difference particle filter. Acta Automatica Sinica, 2010, 36(2): 249-257(祝继华, 郑南宁, 袁泽剑, 张强. 基于中心差分粒子滤波的SLAM算法. 自动化学报, 2010, 36(2): 249-257)[9] Hahnel D, Burgard W, Fox D, Thrun S. A highly efficient FastSLAM algorithm for generating cyclic maps of large-scale environments from raw laser range measurements. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D. C., USA: IEEE, 2003. 206-211[10] Eliazar A I, Parr R M. DP-SLAM: fast, robust simultaneous localization and mapping without predetermined land-marks. In: Proceedings of the International Joint Conference on Artificial Intelligence. Acapulco, Mexico: Morgan Kaufmann, 2003. 1135-1142[11] Eliazar A I, Parr R. DP-SLAM 2.0. In: Proceedings of the IEEE International Conference on Robotics and Automation. Washington D. C., USA: IEEE, 2004. 1314-1320[12] Nieto J, Bailey T, Nebot E. Scan-SLAM: combining EKF-SLAM and scan correlation. In: Proceedings of the 5th International Conference on Field Robotics. Port Douglas, Australia: Springer, 2005. 167-178[13] Sun R C, Ma S G, Li B, Wang Y C. Simultaneous localization and sampled environment mapping. In: Proceedings of the 48th IEEE Conference on Decision and Control and Held Jointly with the 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 6484-6489[14] Sun Rong-Chuan, Ma Shu-Gen, Li-Bin, Wang Ming-Hui, Wang Yue-Chao. Simultaneous localization and sampled environment mapping based on a divide-and-conquer ideology. Acta Automatica Sinica, 2010, 36(12): 1697-1705(孙荣川, 马书根, 李斌, 王明辉, 王越超. 基于分治法的同步定位与环境采样地图创建. 自动化学报, 2010, 36(12): 1697-1705)[15] Nieto J I, Guivant J E, Nebot E M. The hybrid metric maps (HYMMs): a novel map representation for DenseSLAM. In: Proceedings of the IEEE International Conference on Robotics and Automation. Washington D. C., USA: IEEE, 2004. 391-396[16] Nieto J I, Guivant J E, Nebot E M. DenseSLAM: simultaneous localization and dense mapping. The International Journal of Robotics Research, 2006, 25(8): 711-744[17] Neira J I, Tardos J D. Data association in stochastic mapping using the joint compatibility test. IEEE Transactions on Robotics and Automation, 2001, 17(6): 890-897[18] Barber C B, Dobkin D P, Huhdanpaa H. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 1996, 22(4): 469-483[19] Aurenhammer F. Voronoi diagrams —— a survey of a fundamental geometric data structure. ACM Computing Surveys, 1991, 23(3): 345-405[20] Doh N L, Chung W K, Lee S, Oh S, You B. A robust general Voronoi graph based SLAM for a hyper symmetric environment. In: Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D. C., USA: IEEE, 2003. 218-223[21] Choset H, Nagatani K. Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization. IEEE Transactions on Robotics and Automation, 2001, 17(2): 125-137[22] Duda R O, Hart P E. Pattern Classification and Scene Analysis. New York: John Wiley and Sons, 1973. 11-15[23] Borges G A, Aldon M J. Line extraction in 2D range images for mobile robotics. Journal of Intelligent and Robotic Systems, 2004, 40(3): 267-297[24] Haralick R M. Propagating covariance in computer vision. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition. Washington D. C., USA: IEEE, 1994. 493-498[25] Besl P J, McKay H D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256[26] Guo R, Sun F C, Yuan L. ICP based on polar point matching with application to graph-SLAM. In: Proceedings of the International Conference on Mechatronics and Automation. Changchun, China: IEEE, 2009. 1122-1127[27] Zhang Z Y. Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 1994, 13(2): 119-152[28] Lu F. Shape Registration Using Optimization for Mobile Robot Navigation [Ph.D. dissertation], University of Toronto, Canada, 1995
  • 加载中
计量
  • 文章访问数:  2480
  • HTML全文浏览量:  58
  • PDF下载量:  1533
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-29
  • 修回日期:  2011-02-18
  • 刊出日期:  2011-09-20

目录

    /

    返回文章
    返回