2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于鲁棒协同推荐的元信息增强变分贝叶斯矩阵分解模型

李聪 骆志刚

李聪, 骆志刚. 用于鲁棒协同推荐的元信息增强变分贝叶斯矩阵分解模型. 自动化学报, 2011, 37(9): 1067-1076. doi: 10.3724/SP.J.1004.2011.01067
引用本文: 李聪, 骆志刚. 用于鲁棒协同推荐的元信息增强变分贝叶斯矩阵分解模型. 自动化学报, 2011, 37(9): 1067-1076. doi: 10.3724/SP.J.1004.2011.01067
LI Cong, LUO Zhi-Gang. A Metadata-enhanced Variational Bayesian Matrix Factorization Model for Robust Collaborative Recommendation. ACTA AUTOMATICA SINICA, 2011, 37(9): 1067-1076. doi: 10.3724/SP.J.1004.2011.01067
Citation: LI Cong, LUO Zhi-Gang. A Metadata-enhanced Variational Bayesian Matrix Factorization Model for Robust Collaborative Recommendation. ACTA AUTOMATICA SINICA, 2011, 37(9): 1067-1076. doi: 10.3724/SP.J.1004.2011.01067

用于鲁棒协同推荐的元信息增强变分贝叶斯矩阵分解模型

doi: 10.3724/SP.J.1004.2011.01067
详细信息
    通讯作者:

    李聪 国防科学技术大学计算机学院博士研究生. 主要研究方向为机器学习,人工智能与信息检索.E-mail: licongwhy@gmail.com

A Metadata-enhanced Variational Bayesian Matrix Factorization Model for Robust Collaborative Recommendation

  • 摘要: 托攻击是协同过滤推荐系统面临的重大安全威胁. 研究可抵御托攻击的鲁棒协同推荐技术已成为目前的重要课题. 本文在引入用户嫌疑性评估策略的基础上, 通过将用户嫌疑性及项类属等元信息与贝叶斯概率矩阵分解模型相融合, 提出了用于鲁棒协同推荐的元信息增强变分贝叶斯矩阵分解模型(Metadata-enhanced variational Bayesian matrix factorization, MVBMF), 并设计了相应的模型增量学习策略. 实验表明, 与现有推荐模型相比, 这种模型具备更强的攻击耐受力, 能够有效提高推荐系统的鲁棒性.
  • [1] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extension. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749[2] O'Mahony M P, Hurley N J, Kushmerick N, Silvestre G C M. Collaborative recommendation: a robustness analysis. ACM Transactions on Internet Technology, 2004, 4(4): 344-377[3] O'Mahony M P, Hurley N J, Silvestre G C M. Detecting noise in recommender system databases. In: Proceedings of the 11th International Conference on Intelligent User Interfaces. Sydney, Australia: ACM, 2006. 109-115[4] Lam S, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th Conference on World Wide Web. New York, USA: ACM, 2004. 393-402[5] Su X, Khoshgoftaar T M. A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009, 2009: 1-20[6] Mobasher B, Burke R, Bhaumik R, Williams C. Toward trustworthy recommender systems: an analysis of attack models and algorithm robustness. ACM Transactions on Internet Technology, 2007, 7(4): 1-40[7] Mobasher B, Burke R, Bhaumik R, Sandvig J J. Attacks and remedies in collaborative recommendation. IEEE Intelligent Systems, 2007, 22(3): 56-63[8] O'Mahony M P, Hurley N J, Silvestre G C M. Efficient and secure collaborative filtering through intelligent neighbor selection. In: Proceedings of the 16th European Conference on Artificial Intelligence. Valencia, Spain: IOS Press, 2004. 383-387[9] Sandvig J J, Mobasher B, Burke R. Impact of relevance measures on the robustness and accuracy of collaborative filtering. In: Proceedings of the 8th International Conference on E-commerce and Web Technologies. Berlin, Germany: Springer, 2007. 99-108[10] Sandvig J J, Mobasher B, Burke R. Robustness of collaborative recommendation based on association rule mining. In: Proceedings of the ACM Conference on Recommender Systems. New York, USA: ACM, 2007. 105-112[11] Mehta B, Hofmann T, Nejdl W. Robust collaborative filtering. In: Proceedings of the ACM Conference on Recommender Systems. New York, USA: ACM, 2007. 49-56[12] Huber P J. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 1964, 35(1): 73-101[13] Mehta B, Nejdl W. Attack resistant collaborative filtering. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2008. 75-82[14] Hofmann T. Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 1999. 50-57[15] Hurley N, Cheng Z, Zhang M. Statistical attack detection. In: Proceedings of the 3rd ACM Conference on Recommender Systems. New York, USA: ACM, 2009. 149-156[16] Zhang S, Wang W, Ford J, Makedon F, Pearlman J. Using singular value decomposition approximation for collaborative filtering. In: Proceedings of the 7th IEEE International Conference on E-commerce Technology. Washington D.C., USA: IEEE, 2005. 257-264[17] Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In: Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM, 2008. 880-887[18] Williamson S, Ghahramani Z. Probabilistic models for data combination in recommender systems. In: Proceedings of the NIPS Workshop: Learning from Multiple Sources. Vancouver, Canada: The MIT Press, 2008. 1-4[19] Tipping M E, Lawrence N D. Variational inference for student-t models: robust Bayesian interpolation and generalised component analysis. Neurocomputing, 2005, 69(1-3): 123-141[20] Attias H. Inferring parameters and structure of latent variable models by variational Bayes. In: Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 1999. 21-30[21] Jaakkola T S, Jordan M I. Bayesian parameter estimation via variational methods. Statistics and Computing, 2000, 10(1): 25-37[22] Marlin B. Collaborative Filtering: a Machine Learning Perspective [Master dissertation], University of Toronto, Canada, 2004[23] Huber P J, Ronchetti E M. Robust Statistics (Second Edition). New Jersey: John Wiley and Sons, 2009. 149-199[24] Barrodale I, Roberts F D K. An improved algorithm for discrete L_1 linear approximation. SIAM Journal on Numerical Analysis, 1973, 10(5): 839-848[25] Street J O, Carroll R J, Ruppert D. A note on computing robust regression estimates via iteratively reweighted least squares. The American Statistician, 1988, 42(2): 152-154[26] MacKay D J C. Bayesian interpolation. Neural Computation, 1992, 4(3): 415-447
  • 加载中
计量
  • 文章访问数:  2170
  • HTML全文浏览量:  81
  • PDF下载量:  1093
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-29
  • 修回日期:  2011-03-31
  • 刊出日期:  2011-09-20

目录

    /

    返回文章
    返回