[1]
|
Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extension. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749[2] O'Mahony M P, Hurley N J, Kushmerick N, Silvestre G C M. Collaborative recommendation: a robustness analysis. ACM Transactions on Internet Technology, 2004, 4(4): 344-377[3] O'Mahony M P, Hurley N J, Silvestre G C M. Detecting noise in recommender system databases. In: Proceedings of the 11th International Conference on Intelligent User Interfaces. Sydney, Australia: ACM, 2006. 109-115[4] Lam S, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th Conference on World Wide Web. New York, USA: ACM, 2004. 393-402[5] Su X, Khoshgoftaar T M. A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009, 2009: 1-20[6] Mobasher B, Burke R, Bhaumik R, Williams C. Toward trustworthy recommender systems: an analysis of attack models and algorithm robustness. ACM Transactions on Internet Technology, 2007, 7(4): 1-40[7] Mobasher B, Burke R, Bhaumik R, Sandvig J J. Attacks and remedies in collaborative recommendation. IEEE Intelligent Systems, 2007, 22(3): 56-63[8] O'Mahony M P, Hurley N J, Silvestre G C M. Efficient and secure collaborative filtering through intelligent neighbor selection. In: Proceedings of the 16th European Conference on Artificial Intelligence. Valencia, Spain: IOS Press, 2004. 383-387[9] Sandvig J J, Mobasher B, Burke R. Impact of relevance measures on the robustness and accuracy of collaborative filtering. In: Proceedings of the 8th International Conference on E-commerce and Web Technologies. Berlin, Germany: Springer, 2007. 99-108[10] Sandvig J J, Mobasher B, Burke R. Robustness of collaborative recommendation based on association rule mining. In: Proceedings of the ACM Conference on Recommender Systems. New York, USA: ACM, 2007. 105-112[11] Mehta B, Hofmann T, Nejdl W. Robust collaborative filtering. In: Proceedings of the ACM Conference on Recommender Systems. New York, USA: ACM, 2007. 49-56[12] Huber P J. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 1964, 35(1): 73-101[13] Mehta B, Nejdl W. Attack resistant collaborative filtering. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2008. 75-82[14] Hofmann T. Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 1999. 50-57[15] Hurley N, Cheng Z, Zhang M. Statistical attack detection. In: Proceedings of the 3rd ACM Conference on Recommender Systems. New York, USA: ACM, 2009. 149-156[16] Zhang S, Wang W, Ford J, Makedon F, Pearlman J. Using singular value decomposition approximation for collaborative filtering. In: Proceedings of the 7th IEEE International Conference on E-commerce Technology. Washington D.C., USA: IEEE, 2005. 257-264[17] Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In: Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM, 2008. 880-887[18] Williamson S, Ghahramani Z. Probabilistic models for data combination in recommender systems. In: Proceedings of the NIPS Workshop: Learning from Multiple Sources. Vancouver, Canada: The MIT Press, 2008. 1-4[19] Tipping M E, Lawrence N D. Variational inference for student-t models: robust Bayesian interpolation and generalised component analysis. Neurocomputing, 2005, 69(1-3): 123-141[20] Attias H. Inferring parameters and structure of latent variable models by variational Bayes. In: Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 1999. 21-30[21] Jaakkola T S, Jordan M I. Bayesian parameter estimation via variational methods. Statistics and Computing, 2000, 10(1): 25-37[22] Marlin B. Collaborative Filtering: a Machine Learning Perspective [Master dissertation], University of Toronto, Canada, 2004[23] Huber P J, Ronchetti E M. Robust Statistics (Second Edition). New Jersey: John Wiley and Sons, 2009. 149-199[24] Barrodale I, Roberts F D K. An improved algorithm for discrete L_1 linear approximation. SIAM Journal on Numerical Analysis, 1973, 10(5): 839-848[25] Street J O, Carroll R J, Ruppert D. A note on computing robust regression estimates via iteratively reweighted least squares. The American Statistician, 1988, 42(2): 152-154[26] MacKay D J C. Bayesian interpolation. Neural Computation, 1992, 4(3): 415-447
|