2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迭代重加权的非刚性图像配准

韩雨 王卫卫 冯象初

韩雨, 王卫卫, 冯象初. 基于迭代重加权的非刚性图像配准. 自动化学报, 2011, 37(9): 1059-1066. doi: 10.3724/SP.J.1004.2011.01059
引用本文: 韩雨, 王卫卫, 冯象初. 基于迭代重加权的非刚性图像配准. 自动化学报, 2011, 37(9): 1059-1066. doi: 10.3724/SP.J.1004.2011.01059
HAN Yu, WANG Wei-Wei, FENG Xiang-Chu. Iteratively Reweighted Method Based Nonrigid Image Registration. ACTA AUTOMATICA SINICA, 2011, 37(9): 1059-1066. doi: 10.3724/SP.J.1004.2011.01059
Citation: HAN Yu, WANG Wei-Wei, FENG Xiang-Chu. Iteratively Reweighted Method Based Nonrigid Image Registration. ACTA AUTOMATICA SINICA, 2011, 37(9): 1059-1066. doi: 10.3724/SP.J.1004.2011.01059

基于迭代重加权的非刚性图像配准

doi: 10.3724/SP.J.1004.2011.01059
详细信息
    通讯作者:

    韩雨 西安电子科技大学理学院应用数学系博士研究生. 主要研究方向为 图像配准和分割.E-mail: hany_xidian@126.com

Iteratively Reweighted Method Based Nonrigid Image Registration

  • 摘要: 非刚性图像配准问题是当今重要的研究课题. 本文提出一类基于能量最小化方法的非刚性图像配准模型, 其中包括单模态和多模态两个模型. 在单模态模型中,正则项采用迭代重加权的L2范数度量, 一方面克服了迭代收敛不同步的问题, 另一方面使新模型既能保持图像的边缘几何结构, 又能避免块效应的产生. 在多模态模型中, 不同模态的图像被转化为同一模态进行处理, 提高了配准的效率. 在模型求解方面, 利用算子分裂和交替最小化的方法, 将原问题转化为阈值和加性算子分裂的迭代格式进行求解. 数值实验表明, 本文的方法对含噪以及变形较大的图像都能实现较好的配准.
  • [1] Thirion J. Image matching as a diffusion process: an analogy with Maxwell's demons. Medical Image Analysis, 1998, 2(3): 243-260[2] Wang H, Dong L, O'Daniel J, Mohan R, Garden AS, Ang K K. Validation of an accelerated "demons" algorithm for deformable image registration in radiation therapy. Physics in Medicine and Biology, 2005, 50(12): 2887-2905[3] Pock T, Urschler M, Zach C, Beichel R, Bischof H. A duality based algorithm for TV-L_1 optical flow image registration. Medical Image Computing and Computer-Assisted Intervention, 2007, 4792: 511-518[4] Bai Xiao-Jing, Chen Yun-Jie, Sun Huai-Jiang. An improved optical flow model for brain image registration. Computer-Aided Design and Computer Graphics, 2008, 20(3): 349-355(白小晶, 陈允杰, 孙怀江. 基于改进光流场模型的大脑图像配准. 计算机辅助设计与图形学学报, 2008, 20(3): 349-355)[5] Lu W, Chen M, Olivera G, Ruchala K J, Mackie T R. Fast free-form deformable registration via calculus of variations physical. Physics in Medicine and Biology, 2004, 49(14): 3067-3087[6] Viola P, Wells W. Alignment by maximization of mutual information. International Journal of Computer Vision, 1997, 24(2): 137-154[7] Pluim J, Maintz J, Viergever M. Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging, 2003, 22(8): 986-1004[8] Loeckx D, Slagmolen P, Maes F, Vandermeulen D, Suetens P. Nonrigid image registration using conditional mutual information. IEEE Transactions on Medical Imaging, 2010, 29(1): 19-29[9] Hahn D A, Daum V, Hornegger J. Automatic parameter selection for multimodal image registration. IEEE Transactions on Medical Imaging, 2010, 29(5): 1140-1155[10] Zhang Shao-Min, Zhi Li-Jia, Zhao Da-Zhe, Zhao Hong, Yang Jin-Zhu. Multi-modality medical image registration based on regional joint Renyi entropy. Acta Electronica Sinica, 2009, 37(10): 2321-2325(张少敏, 支力佳, 赵大哲, 赵宏, 杨金柱. 基于区域联合Renyi熵的多模医学图像配准. 电子学报, 2009, 37(10): 2321-2325)[11] Niu Li-Pi, Mao Shi-Yi, Chen Wei. Image registration based on Hausdorff distance. Journal of Electronics and Information Technology, 2007, 29(1): 36-38(牛力丕, 毛士艺, 陈炜. 基于Hausdorff距离的图像配准研究. 电子与信息学报, 2007, 29(1): 36-38)[12] Wang An-Na, Zhang Xin-Hua, Gu Zhao-Wei, Pan Bo. A medical image registration algorithm based on revised Hausdorff distance. Acta Electronica Sinica, 2008, 36(11): 2248-2250(王安娜, 张新华, 谷召伟, 潘博. 基于改进Hausdorff测度的医学图像配准算法. 电子学报, 2008, 36(11): 2248-2250)[13] Zhang Xiu-Wei, Zhang Yan-Ning, Yang Tao, Zhang Xin-Gong, Shao Da-Pei. Automatic visual-thermal image sequence registration based on co-motion. Acta Automatica Sinica, 2010, 36(9): 1221-1231(张秀伟, 张艳宁, 杨涛, 张新功, 邵大培. 基于Co-motion的可见光--热红外图像序列自动配准算法. 自动化学报, 2010, 36(9): 1221-1231)[14] Zhang Hong-Ying, Zhang Jia-Wan, Sun Ji-Zhou. Non-rigid medical image registration based on improved demons algorithm. Optics and Precision Engineering, 2007, 15(1): 145-150(张红颖, 张加万, 孙济洲. 改进Demons算法的非刚性医学图像配准. 光学精密工程, 2007, 15(1): 145-150)[15] Kroon D J, Slump C H. MRI modalitiy transformation in demon registration. In: Proceedings of the IEEE International Symposium on Biomedical Imaging. Boston, USA: IEEE, 2009. 963-966[16] Lin Xiang-Bo, Qiu Tian-Shuang, Ruan Su. Research on the topology preservation of the demons non-rigid registration algorithm. Acta Automatica Sinica, 2010, 36(1): 180-183(林相波, 邱天爽, 阮素. Demons非刚性配准算法拓扑保持性的研究. 自动化学报, 2010, 36(1): 180-183)[17] Zhang L, Dong W S, Zhang D, Shi G M. Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognition, 2010, 43(4): 1531-1549[18] Feng Xiang-Chu, Wang Wei-Wei. Variational and PDE Based Approaches in Image Processing. Beijing: Science Press, 2009(冯象初, 王卫卫. 图像处理的变分和偏微分方程方法. 北京: 科学出版社, 2009)[19] Lysaker M, Lundervold A, Tai X C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on Image Processing, 2003, 12(12): 1579-1590[20] Daubechies I, DeVore R, Fornasier M, Gunturk C S. Iteratively re-weighted least squares minimization for sparse recovery. Communications on Pure and Applied Mathematics, 2010, 63(1): 1-38[21] Candues E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted L_1 minimization. Journal of Fourier Analysis and Applications, 2008, 14(5-6): 877-905[22] Nikolova M, Ng M K, Zhang S Q, Ching W K. Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM Journal on Imaging Sciences, 2008, 1(1): 2-25[23] Weickert J, Romeny B M, Viergever M A. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing, 1998, 7(3): 398-410[24] Shi Yong-Gang, Zou Mou-Yan. Performance comparison of statistics based similarity measures for image registration. Chinese Journal of Computers, 2004, 27(9): 1279-1283(时永刚, 邹谋炎. 图像配准中统计型相似性测度的比较与分析. 计算机学报, 2004, 27(9): 1279-1283)[25] Baker S, Scharstein D, Lewis J P, Roth S, Black M, Szeliski R. A database and evaluation methodology for optical flow. International Journal of Computer Vision, 2011, 92(1): 1-31[26] Wang Wei-Wei, Han Yu, Feng Xiang-Chu. Image denoising based on nonlocal diffusion. Acta Optica Sinica, 2010, 30(2): 373-377(王卫卫, 韩雨, 冯象初. 基于非局部扩散的图像去噪. 光学学报, 2010, 30(2): 373-377)[27] Su Juan, Lin Xing-Gang, Liu Dai-Zhi. A multi-sensor image registration algorithm based on structure feature edges. Acta Automatica Sinica, 2009, 35(3): 251-257(苏娟, 林行刚, 刘代志. 一种基于结构特征边缘的多传感器图像配准方法. 自动化学报, 2009, 35(3): 251-257)
  • 加载中
计量
  • 文章访问数:  2393
  • HTML全文浏览量:  106
  • PDF下载量:  1155
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-28
  • 修回日期:  2011-04-09
  • 刊出日期:  2011-09-20

目录

    /

    返回文章
    返回