2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于目标出生强度在线估计的多目标跟踪算法

闫小喜 韩崇昭

闫小喜, 韩崇昭. 基于目标出生强度在线估计的多目标跟踪算法. 自动化学报, 2011, 37(8): 963-972. doi: 10.3724/SP.J.1004.2011.00963
引用本文: 闫小喜, 韩崇昭. 基于目标出生强度在线估计的多目标跟踪算法. 自动化学报, 2011, 37(8): 963-972. doi: 10.3724/SP.J.1004.2011.00963
YAN Xiao-Xi, HAN Chong-Zhao. Multiple Target Tracking Algorithm Based on Online Estimation of Target Birth Intensity. ACTA AUTOMATICA SINICA, 2011, 37(8): 963-972. doi: 10.3724/SP.J.1004.2011.00963
Citation: YAN Xiao-Xi, HAN Chong-Zhao. Multiple Target Tracking Algorithm Based on Online Estimation of Target Birth Intensity. ACTA AUTOMATICA SINICA, 2011, 37(8): 963-972. doi: 10.3724/SP.J.1004.2011.00963

基于目标出生强度在线估计的多目标跟踪算法

doi: 10.3724/SP.J.1004.2011.00963
详细信息
    通讯作者:

    闫小喜 西安交通大学电子与信息工程学院综合自动化研究所博士研究生. 主要研究方向为多源信息融合, 多目标跟踪和随机有限集.本文通信作者. E-mail: yanxiaoxi1981@gmail.com

Multiple Target Tracking Algorithm Based on Online Estimation of Target Birth Intensity

  • 摘要: 针对多目标跟踪中未知的目标出生强度, 提出了基于Dirichlet分布的目标出生强度在线估计算法, 来改进概率假设密度滤波器在多目标跟踪中的性能. 算法采用有限混合模型来描述未知目标出生强度, 使用仅依赖于混合权重的负指数Dirichlet分布作为混合模型参数的先验分布. 利用拉格朗日乘子法推导了混合权重在极大后验意义下的在线估计公式; 混合权重在线估计过程利用了负指数Dirichlet分布的不稳定性, 驱使与目标出生数据不相关分量的消亡. 以随机近似过程为分量均值和方差的在线估计策略, 推导了基于缺失数据的分量均值与方差的在线估计公式. 在无法获得初始步出生目标先验分布的约束下, 提出了在混合模型上增加均匀分量的初始化方法. 以当前时刻的多目标状态估计值为出发点, 提出了利用概率假设密度滤波器消弱杂波影响的出生目标数据获取方法. 仿真结果表明, 提出的目标出生强度在线估计算法改进了概率假设密度滤波器在多目标跟踪中的性能.
  • [1] Pulford G E. Taxonomy of multiple target tracking methods. IEE Proceedings of Radar, Sonar and Navigation}, 2005, 152(5): 291-304[2] Blackman S, Popoli R. Design and Analysis of Modern Tracking Systems. Norwood: Artech House, 1999[3] Daley D, Vere-jones D. An Introduction to the Theory of Point Processes. Second Edition. New York: Springer-Verlag, 2002[4] Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178[5] Mahler R P S. Statistical Multisource-Multitarget Information Fusion. Norwood: Artech House, 2007[6] Erdinc O, Willett P, Bar-shalom Y. The bin-occupancy filter and its connection to the PHD filters. IEEE Transactions on Signal Processing, 2009, 57(11): 4232-4246[7] Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245[8] Whiteley N, Singh S, Godsill S. Auxiliary particle implementation of probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1437-1454[9] Liu W F, Han C Z, Lian F, Zhu H Y. Multitarget state extraction for the PHD filter using MCMC approach. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 864-883[10] Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104[11] Pasha S A, Vo B N, Tuan H D, Ma W K. A Gaussian mixture PHD filter for jump Markov system models. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 919-936[12] Clark D E, Bell J. Convergence results for the particle PHD filter. IEEE Transactions on Signal Processing, 2006, 54(7): 2652-2661[13] Clark D E, Vo B N. Convergence analysis of the Gaussian mixture PHD filter. IEEE Transactions on Signal Processing, 2007, 55(4): 1204-1212[14] Mahler R P S. PHD filters of higher order in target number. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543[15] Vo B T, Vo B N, Cantoni A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Transactions on Signal Processing, 2009, 57(2): 409-423[16] Franken D, Schmidt M, Ulmke M. "Spooky action at a distance" in the cardinalized probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4): 1657-1664[17] Vo B T, Vo B N, Cantoni A. Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567[18] Zhang H J, Jing Z L, Hu S Q. Gaussian mixture CPHD filter with gating technique. Signal Processing, 2009, 89(8): 1521-1530[19] Punithakumar K, Kirubarajan T, Sinha A. Multiple-model probability hypothesis density filter for tracking maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 87-98[20] Lian Feng, Han Chong-Zhao, Liu Wei-Feng, Yuan Xiang-Hui. Multiple-model probability hypothesis density smoother. Acta Automatica Sinica, 2010, 36(7): 939-950 (连峰, 韩崇昭, 刘伟峰, 元向辉. 多模型概率假设密度平滑器. 自动化学报, 2010, 36(7): 939-950)[21] Clark D E, Bell J. Multi-target state estimation and track continuity for the particle PHD filter. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1441-1453[22] Panta K, Clark D, Vo B N. Data association and track management for the Gaussian mixture probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1003-1016[23] Vo B T, Vo B N, Cantoni A. Bayesian filtering with random finite set observations. IEEE Transactions on Signal Processing, 2008, 56(4): 1313-1326[24] Rezaeian M, Vo B N. Error bounds for joint detection and estimation of a single object with random finite set observation. IEEE Transactions on Signal Processing, 2010, 58(3): 1493-1506[25] Wang Y D, Wu J K, Kassim A A, Huang W M. Data-driven probability hypothesis density filter for visual tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1085-1095[26] Maggio E, Taj M, Cavallaro A. Efficient multitarget visual tracking using random finite sets. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1016-1027[27] Maggio E, Cavallaro A. Learning scene context for multiple object tracking. IEEE Transactions on Image Processing, 2009, 18(8): 1873-1884[28] Clark D, Ruiz I T, Petilot Y, Bell J. Particle PHD filter multiple target tracking in sonar images. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 409-416[29] Clark D, Ristic B, Vo B N, Vo B T. Bayesian multi-object filtering with amplitude feature likelihood for unknown object SNR. IEEE Transactions on Signal Processing, 2010, 58(1): 26-37[30] Zhang H J, Jing Z L, Hu S Q. Localization of multiple emitters based on the sequential PHD filter. Signal Processing, 2010, 90(1): 34-43[31] Mclachlan G, Peel D. Finite Mixture Models}. New York: John Wiley and Sons, 2000 \vskip 5mm[32] Davy M, Tourneret J Y. Generative supervised classification using Dirichlet process priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1781-1794[33] Figueiredo M A F, Jain A K. Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 381-396[34] Hoffman J R, Mahler R P S. Multitarget miss distance via optimal assignment. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2004, 34(3): 327-336 }
  • 加载中
计量
  • 文章访问数:  2049
  • HTML全文浏览量:  75
  • PDF下载量:  872
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-29
  • 修回日期:  2010-12-27
  • 刊出日期:  2011-08-20

目录

    /

    返回文章
    返回