[1]
|
Takagi M, Shimoda H [Author], Sun Wei-Dong [Translator]. Handbook of Image Analysis. Beijing: Science Press, 2007(Takagi M, Shimoda H [著], 孙卫东 [译]. 图像处理技术手册. 北京: 科学出版社, 2007)[2] Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: IEEE, 1999. 246-252[3] Elgammal A M, Harwood D, Davis L S. Non-parametric model for background substraction. In: Proceedings of the 6th European Conference on Computer Vision. London, UK: Springer-Verlag, 2000. 751-767[4] Elgammal A, Duraiswami R, Harwood D, Davis L S. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of IEEE, 2002, 90(7): 1151-1163[5] Parag T, Elgammal A, Mittal A. A framework for feature selection for background subtraction. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 1916-1923[6] Perez A, Larranaga P, Inza I. Bayesian classifiers based on kernel density estimation: flexible classifiers. International Journal of Approximate Reasoning, 2009, 50(2): 341-362[7] Banerjee A, Burlina P. Efficient particle filtering via sparse kernel density estimation. IEEE Transactions on Image Processing, 2010, 19(9): 2480-2490[8] Kristan M, Skocaj D, Leonardis A. Online kernel density estimation for interactive learning. Image and Vision Computing, 2010, 28(7): 1106-1116[9] Monnet A, Mittal A, Paragios N, Visvanathan R. Background modeling and subtraction of dynamic scenes. In: Proceedings of the 9th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE, 2003. 1305-1312[10] Bravo I, Mazo M, Lazaro J L, Gardel A, Jimenez P, Pizarro D. An intelligent architecture based on field programmable gate arrays designed to detect moving objects by using principal component analysis. Sensors, 2010, 10(10): 9232-9251[11] Guo L H, Li J H, Chen L Y, Yang S T. Gibbs distributions and Markov random field model: application on background modeling in video surveillance. In: Proceedings of the SPIE Real Time Imaging VIII. San Jose, USA: SPIE, 2004. 264-270[12] Xu Jian, Ding Xiao-Qing, Wang Sheng-Jin. Object occupancy probabilistic field based multi-view moving object detection and correspondence. Acta Automatica Sinica, 2008, 34(5): 609-612(徐剑, 丁晓青, 王生进. 基于目标存在概率场的多视角运动目标检测与对应算法. 自动化学报, 2008, 34(5): 609-612)[13] Hwang Y, Kim J S, Kweon I S. Change detection using a statistical model in an optimally selected color space. Computer Vision and Image Understanding, 2008, 122(3): 231-242[14] Chang M C, Cheng Y J. Motion detection by using entropy image and adaptive state-labeling technique. In: Proceedings of the IEEE International Symposium on Circuits and Systems. New Orleans, USA: IEEE, 2007. 3667-3670[15] Liu Peng, Xu Jing, Liu Jia-Feng, Tang Xiang-Long. An algorithm for real-time analysis of rain-affected videos. Acta Automatica Sinica, 2010, 36(10): 1371-1378(刘鹏, 徐晶, 刘家锋, 唐降龙. 一种受雨滴污染视频的快速分析方法. 自动化学报, 2010, 36(10): 1371-1378)[16] Li L Y, Huang W M, Gu I Y H, Tian Q. Statistical modeling of complex backgrounds for foreground object detection. IEEE Transactions on Image Processing, 2004, 13(11): 1459-1472[17] Kim K, Chalidabhongse T H, Harwood D, Davis L. Background modeling and subtraction by codebook construction. In: Proceedings of the IEEE International Conference on Image Processing. Washington D. C., USA: IEEE, 2004. 3061-3064[18] Culibrk D, Marques O, Socke D, Kalva H, Furht B. Neural network approach to background modeling for video object segmentation. IEEE Transactions on Neural Networks, 2007, 18(11): 1614-1627[19] Xu Jian, Ding Xiao-Qing, Wang Sheng-Jin, Wu You-Shou. Background subtraction based on a combination of local texture and color. Acta Automatica Sinica, 2009, 35(9): 1145-1150(徐剑, 丁晓青, 王生进, 吴佑寿. 一种融合局部纹理和颜色信息的背景减除方法. 自动化学报, 2009, 35(9): 1145-1150)[20] Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower: principles and practice of background maintenance. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE, 1999. 256-261[21] Tian Y L, Lu M, Hampapur A. Robust and efficient foreground analysis for real-time video surveillance. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2005. 1182-1187[22] Heikkil M, Pietikainen M. A texture-based method for modeling the background and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662[23] Manzanera A, Richefeu J C. A new motion detection algorithm based on Σ -Δ background estimation. Pattern Recognition Letters, 2007, 28(3): 320-328[24] Fan Jian-Qing, Yao Qi-Wei [Author], Chen Min [Translator]. Non-linear Time Series: Nonparametric and Parametric Methods. Beijing: Higher Education Press, 2005(范剑青, 姚琦伟 [著], 陈敏 [译]. 非线性时间序列: 建模、预报及应用. 北京: 高等教育出版社, 2005)
|