2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于P学习的分布式并行多任务分配算法

苏兆品 蒋建国 梁昌勇 张国富

苏兆品, 蒋建国, 梁昌勇, 张国富. 一种基于P学习的分布式并行多任务分配算法. 自动化学报, 2011, 37(7): 865-872. doi: 10.3724/SP.J.1004.2011.00865
引用本文: 苏兆品, 蒋建国, 梁昌勇, 张国富. 一种基于P学习的分布式并行多任务分配算法. 自动化学报, 2011, 37(7): 865-872. doi: 10.3724/SP.J.1004.2011.00865
SU Zhao-Pin, JIANG Jian-Guo, LIANG Chang-Yong, ZHANG Guo-Fu. A Distributed Algorithm for Parallel Multi-task Allocation Based on Profit Sharing Learning. ACTA AUTOMATICA SINICA, 2011, 37(7): 865-872. doi: 10.3724/SP.J.1004.2011.00865
Citation: SU Zhao-Pin, JIANG Jian-Guo, LIANG Chang-Yong, ZHANG Guo-Fu. A Distributed Algorithm for Parallel Multi-task Allocation Based on Profit Sharing Learning. ACTA AUTOMATICA SINICA, 2011, 37(7): 865-872. doi: 10.3724/SP.J.1004.2011.00865

一种基于P学习的分布式并行多任务分配算法

doi: 10.3724/SP.J.1004.2011.00865

A Distributed Algorithm for Parallel Multi-task Allocation Based on Profit Sharing Learning

  • 摘要: 并行多任务分配是多agent系统中极具挑战性的课题, 主要面向资源分配、灾害应急管理等应用需求, 研究如何把一组待求解任务分配给相应的agent联盟去执行. 本文提出了一种基于自组织、自学习agent的分布式并行多任务分配算法, 该算法引入P学习设计了单agent寻找任务的学习模型, 并给出了agent之间通信和协商策略. 对比实验说明该算法不仅能快速寻找到每个任务的求解联盟, 而且能明确给出联盟中各agent成员的实际资源承担量, 从而可以为实际的控制和决策任务提供有价值的参考依据.
  • [1] Seow K T, Sim K M, Kwek S Y. Coalition formation for resource coallocation using BDI assignment agents. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(4): 682-693[2] Li J D, Yahyapour R. Negotiation model supporting co-allocation for grid scheduling. In: Proceedings of the 7th IEEE/ACM International Conference on Grid Computing. Barcelona, Spain, IEEE, 2006. 254-261[3] Gunawan L T. Collaboration-oriented design of disaster response system. In: Proceedings of the 26th Annual SIGCHI Conference on Human Factors in Computing Systems. Florence, Italy: ACM, 2008. 2613-2616[4] Boloni L, Khan M A, Turgut D. Agent-based coalition formation in disaster response applications. In: Proceedings of the IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications. Prague, Czech Republic: IEEE, 2006. 259-264[5] Bachrach Y, Rosenschein J S. Coalitional skill games. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems. Richland, USA: International Foundation for Autonomous Agents and Multiagent Systems, 2008. 1023-1030[6] Chen Y M, Huan P N. Agent-based bilateral multi-issue negotiation scheme for e-market transactions. Applied Soft Computing, 2009, 9(3): 1057-1067[7] Kulkarni A J, Tai K. Probability collectives: a multi-agent approach for solving combinatorial optimization problems. Applied Soft Computing, 2010, 10(3): 759-771[8] Vig L, Adams J A. Multi-robot coalition formation. IEEE Transactions on Robotics, 2006, 22(4): 637-649[9] Rahwan T, Ramchurn S D, Jennings N R, Giovannucci A. An anytime algorithm for optimal coalition structure generation. Journal of Artificial Intelligence Research, 2009, 34(1): 521-567[10] Agotnes T, Hoek W V D, Wooldridge M. Reasoning about coalitional games. Artificial Intelligence, 2009, 173(1): 45-79 [11] Sen S, Dutta P S. Searching for optimal coalition structures. In: Proceedings of the 4th International Conference on MultiAgent Systems. Boston, USA: IEEE, 2000. 287-292[12] Yang J A, Luo Z H. Coalition formation mechanism in multi-agent systems based on genetic algorithms. Applied Soft Computing, 2007, 7(2): 561-568[13] Zhang G F, Jiang J G, Su Z P, Qi M B, Fang H. Searching for overlapping coalitions in multiple virtual organizations. Information Sciences, 2010, 180(17): 3140-3156[14] Shehory O, Kraus S. Methods for task allocation via agent coalition formation. Artificial Intelligence, 1998, 101(1-2): 165-200 [15] Mataric M J, Sukhatme G S, Ostergaard E H. Multi-robot task allocation in uncertain environments. Autonomous Robots, 2003, 14(2-3): 255-263[16] Thomas L, Rachid A, Simon L. A distributed tasks allocation scheme in multi-UAV context. In: Proceedings of the IEEE International Conference on Robotics and Automation. Washington D. C., USA: IEEE, 2004. 3622-3627[17] Rahwan T, Jennings N R. An algorithm for distributing coalitional value calculations among cooperating agents. Artificial Intelligence, 2007, 171(8-9): 535-567[18] Dash R K, Vytelingum P, Rogers A, David E, Jennings N R. Market-based task allocation mechanisms for limited-capacity suppliers. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2007, 37(3): 391-405[19] Sander P V, Peleshchuk D, Grosz B J. A scalable, distributed algorithm for efficient task allocation. In: Proceedings of the 1st International Joint Conference on Autonomous Agents and Multiagent Systems. New York, USA: ACM, 2002. 1191-1198[20] Viguria A, Howard A. Upper-bound cost analysis of a market-based algorithm applied to the initial formation problem. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA: IEEE, 2007. 2326-2331[21] Kitakoshia D, Shioyab H, Nakanoa R. Empirical analysis of an on-line adaptive system using a mixture of Bayesian networks. Information Sciences: an International Journal, 2010, 180(15): 2856-2874[22] Ken S, Shiro M. Profit sharing introducing the judgement of incomplete perception. Transactions of the Japanese Society for Artificial Intelligence, 2004, 19(5): 379-388[23] Hasegawa Y, Takada S, Nakano H, Arai S, Miyauchi A. A reinforcement learning method using a dynamic reinforcement function based on action selection probability. Systems and Computers in Japan, 2007, 38(7): 1-11[24] Fujishiro T, Nakano H, Miyauchi A. Parallel distributed profit sharing for PC cluster. In: Proceedings of the 16th International Conference on Artificial Neural Networks. Athens, Greece: Springer, 2006. 811-819
  • 加载中
计量
  • 文章访问数:  2490
  • HTML全文浏览量:  103
  • PDF下载量:  1061
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-05
  • 修回日期:  2011-03-02
  • 刊出日期:  2011-07-20

目录

    /

    返回文章
    返回