2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于视觉伺服反馈的不确定非完整动态移动机器人的自适应镇定

杨芳 王朝立

杨芳, 王朝立. 基于视觉伺服反馈的不确定非完整动态移动机器人的自适应镇定. 自动化学报, 2011, 37(7): 857-864. doi: 10.3724/SP.J.1004.2011.00857
引用本文: 杨芳, 王朝立. 基于视觉伺服反馈的不确定非完整动态移动机器人的自适应镇定. 自动化学报, 2011, 37(7): 857-864. doi: 10.3724/SP.J.1004.2011.00857
YANG Fang, WANG Chao-Li. Adaptive Stabilization for Uncertain Nonholonomic Dynamic Mobile Robots Based on Visual Servoing Feedback. ACTA AUTOMATICA SINICA, 2011, 37(7): 857-864. doi: 10.3724/SP.J.1004.2011.00857
Citation: YANG Fang, WANG Chao-Li. Adaptive Stabilization for Uncertain Nonholonomic Dynamic Mobile Robots Based on Visual Servoing Feedback. ACTA AUTOMATICA SINICA, 2011, 37(7): 857-864. doi: 10.3724/SP.J.1004.2011.00857

基于视觉伺服反馈的不确定非完整动态移动机器人的自适应镇定

doi: 10.3724/SP.J.1004.2011.00857

Adaptive Stabilization for Uncertain Nonholonomic Dynamic Mobile Robots Based on Visual Servoing Feedback

  • 摘要: 研究了带有固定在天花板上的摄像机系统的非完整动态移动机器人的镇定问题. 首先, 利用针孔摄像机模型引入了基于摄像机目标的视觉伺服运动学模型,并针对该运动学模型给出了一个运动学镇定控制器. 然后,在摄像机参数不确定的情形下设计了一个自适应滑模控制器实现了不确定动态移动机器人的镇定. 提出的控制器不仅对结构不确定性如质量变化, 而且对无结构不确定性如外部扰动都具有鲁棒性. 通过Lyapunov方法严格证明了提出的控制系统的稳定性和估计参数的有界性. 仿真结果证实了控制律的有效性.
  • [1] Brockett R W. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory. Boston: Birkhauser, 1983. 181-191[2] Murray R M, Sastry S S. Nonholonomic motion planning: steering using sinusoids. IEEE Transactions on Automatic Control, 1993, 38(5): 700-716[3] Sordalen O J, Egeland O. Exponential stabilization of nonholonomic chained systems. IEEE Transactions on Automatic Control, 1995, 40(1): 35-49[4] Tian Y P, Li S H. Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control. Automatica, 2002, 38(7): 1139-1146[5] Astolfi A. Discontinuous control of nonholonomic systems. Systems and Control Letters, 1996, 27(1): 37-45 [6] Hu Y M, Ge S S, Su C Y. Stabilization of uncertain nonholonomic systems via time-varying sliding mode control. IEEE Transactions on Automatic Control, 2004, 49(5): 757-763[7] Wang Qi-De, Wei Chun-Ling. Robust adaptive control of nonholonomic systems with nonlinear parameterization. Acta Automatica Sinica, 2007, 33(4): 399-403[8] Wang C L, Mei Y C, Liang Z Y, Jia Q W. Dynamic feedback tracking control of non-holonomic mobile robots with unknown camera parameters. Transactions of the Institute of Measurement and Control, 2010, 32(2): 155-169[9] Liang Zhen-Ying, Wang Chao-Li. Robust stabilization of nonholonomic chained form systems with uncertainties. Acta AutomaticaSinica, 2011, 37(2): 129-142[10] Wang Y, Lang H X, Silva C W. A hybrid visual servo controller for robust grasping by wheeled mobile robots. IEEE/ASME Transactions on Mechatronics, 2010, 15(5): 757-769[11] Hu G, MacKunis W, Gans N, Dixon W E, Chen J, Behal A, Dawson D. Homography-based visual servo control with imperfect camera calibration. IEEE Transactions on Automatic Control, 2009, 54(6): 1318-1324[12] Chen J, Dixon W E, Dawson D M, McIntyre M. Homography-based visual servo tracking control of a wheeled mobile robot. IEEE Transactions on Robotics, 2006, 22(2): 406-415[13] Fang Y C, Dixon W E, Dawson D M, Chawda P. Homography-based visual servo regulation of mobile robots. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2005, 35(5): 1041-1050[14] Wang C L, Liang Z Y, Jia Q W. Dynamic feedback robust stabilization of nonholonomic mobile robots based on visual servoing. Journal of Control Theory and Applications, 2010, 8(2): 139-144 [15] Liu Y H, Wang H S, Wang C Y, Lam K K. Uncalibrated visual servoing of robots using a depth-independent interaction matrix. IEEE Transactions on Robotics, 2006, 22(4): 804-817[16] Wang H S, Liu Y H, Zhou D X. Adaptive visual servoing using point and line features with an uncalibrated eye-in-hand camera. IEEE Transactions on Robotics, 2008, 24(4): 843-857[17] Dixon W E, Dawson D M, Zergeroglu E, Behal A. Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2001, 31(3): 341-352[18] Campion G, Bastin G, Dandrea-Novel B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transaction on Robotics and Automation, 1996, 22(1): 47-62[19] Khalil H K. Nonlinear Systems (Third Edition). New Jersey: Prentice Hall, 2001[20] Fierro R, Lewis F L. Control of a nonholonomic mobile robots: backstepping kinematics into dynamics. In: Proceedings of the 34th Conference on Decision and Control. New Orleans, USA: IEEE, 1995. 3805-3810
  • 加载中
计量
  • 文章访问数:  2708
  • HTML全文浏览量:  66
  • PDF下载量:  1145
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-01
  • 修回日期:  2011-03-02
  • 刊出日期:  2011-07-20

目录

    /

    返回文章
    返回