2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于事件的位置不确定移动对象连续概率Skyline查询

付世昌 董一鸿 唐燕琳 陈华辉 钱江波

付世昌, 董一鸿, 唐燕琳, 陈华辉, 钱江波. 基于事件的位置不确定移动对象连续概率Skyline查询. 自动化学报, 2011, 37(7): 836-848. doi: 10.3724/SP.J.1004.2011.00836
引用本文: 付世昌, 董一鸿, 唐燕琳, 陈华辉, 钱江波. 基于事件的位置不确定移动对象连续概率Skyline查询. 自动化学报, 2011, 37(7): 836-848. doi: 10.3724/SP.J.1004.2011.00836
FU Shi-Chang, DONG Yi-Hong, TANG Yan-Lin, CHEN Hua-Hui, QIAN Jiang-Bo. Continuous Probabilistic Skyline Queries for Moving Objects with Uncertainty Based on Event. ACTA AUTOMATICA SINICA, 2011, 37(7): 836-848. doi: 10.3724/SP.J.1004.2011.00836
Citation: FU Shi-Chang, DONG Yi-Hong, TANG Yan-Lin, CHEN Hua-Hui, QIAN Jiang-Bo. Continuous Probabilistic Skyline Queries for Moving Objects with Uncertainty Based on Event. ACTA AUTOMATICA SINICA, 2011, 37(7): 836-848. doi: 10.3724/SP.J.1004.2011.00836

基于事件的位置不确定移动对象连续概率Skyline查询

doi: 10.3724/SP.J.1004.2011.00836

Continuous Probabilistic Skyline Queries for Moving Objects with Uncertainty Based on Event

  • 摘要: Skyline查询是基于位置服务(Location based service, LBS)的一项重要操作,其目的是发现数据集中不被其他点支配的点的集合.移动对象在运动过 程中,其位置信息具有不确定性,导致各数据点间的支配关系不稳定,从而影响Skyline操作.本文针对以位置不确定移动对象为查 询点的Skyline查询进行研究,首先,定义了查询点移动时各对象间支配概率,提出了支配概率和Skyline概率的微元计算方法.在此基 础上,提出一种面向不确定移动对象进行连续概率Skyline查询的有效算法U_CPSC.该算法首先快速计算初始时刻的p-Skyline集合; 然后,定义了两类可能引起p-Skyline变动的事件,通过对这些事件的跟踪计算快速更新p-Skyline集合,无需在移动对象的每一运动 时刻去遍历整个数据集,实现了对p-Skyline的连续更新操作,大大减少了算法的查找和计算开销,提高了运算效率;最后,提出一 种静态算法U_SPSC,与U_CPSC进行了对比试验,实验结果证明了算法的有效性.
  • [1] Borzsonyi S, Kossmann D, Stocker K. The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering. Heidelberg, Germany: IEEE, 2001. 421-430[2] Pei J, Jiang B, Lin X, Yuan Y D. Probabilistic skylines on uncertain data. In: Proceedings of the 33rd International Conference on Very Large Data Bases. Vienna, Austria: VLDB Endowment, 2007. 15-26[3] Zhang W J, Lin X M, Zhang Y, Wang W, Yu J X. Probabilistic skyline operator over sliding windows. In: Proceedings of the 25th International Conference on Data Engineering. Shanghai, China: IEEE, 2009. 1060-1071[4] Atallah M J, Qi Y N. Computing all skyline probabilities for uncertain data. In: Proceedings of the 28th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York, USA: ACM, 2009. 279-287[5] Bohm C, Fiedler F, Oswald A, Plant C, Wackersreuther B. Probabilistic skyline queries. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York, USA: ACM, 2009. 651-660[6] Tan K L, Eng P K, Ooi B C. Efficient progressive skyline computation. In: Proceedings of the 27th International Conference on Very Large Data Bases. San Francisco, USA: Morgan Kaufmann Publishers, 2001. 301-310[7] Kossmann D, Ramsak F, Rost S. Shooting stars in the sky: an online algorithm for skyline queries. In: Proceedings of the 28th International Conference on Very Large Data Bases. Hong Kong, China: Morgan Kaufmann Publishers, 2002. 275-286[8] Papadias D, Tao Y, Fu G, Seeger B. Progressive skyline computation in database systems. ACM Transactions on Database Systems, 2005, 30(1): 41-82 [9] Zhou Hong-Fu, Gong Xue-Qing, Zheng Kai, Zhou Ao-Ying. CSky: an online efficient algorithm for subspace skyline computation in high dimensional space. Chinese Journal of Computers, 2007, 30(8): 1409-1417(周红福, 宫学庆, 郑凯, 周傲英. 基于高维空间的在线高效子空间Skyline 算法-CSky. 计算机学报, 2007, 30(8): 1409-1417)[10] Sun Sheng-Li, Huang Zhen-Hua, Li Jin-Jiu, Guo Jian-Kui, Zhu Yang-Yong. Efficient computation of subspace skyline over data streams. Chinese Journal of Computers, 2007, 30(8): 1418-1428(孙圣力, 黄震华, 李金玖, 郭建奎, 朱扬勇. 数据流上高效计算子空间Skyline的算法. 计算机学报, 2007, 30(8): 1418-1428)[11] Su Liang, Zou Peng, Jia Yan. Adaptive mining of sparse skyline over data stream. Acta Automatica Sinica, 2008, 34(3): 360-366(苏亮, 邹鹏, 贾焰. 数据流上自适应的稀疏Skyline挖掘. 自动化学报, 2008, 34(3): 360-366)[12] Sun Sheng-Li, Dai Dong-Bo, Huang Zhen-Hua, Zhang Qi-Xun, Zhou Li-Xin. Algorithm on computing skyline over probabilistic data stream. Acta Electronica Sinica, 2009, 37(2): 285-293(孙圣力, 戴东波, 黄震华, 张齐勋, 周立新. 概率数据流上Skyline查询处理算法. 电子学报, 2009, 37(2): 285-293)[13] Huang Zhen-Hua, Xiang Yang, Xue Yong-Sheng, Zhao Gang. An efficient method for parallel processing of skyline queries. Acta Automatica Sinica, 2010, 36(7): 968-975(黄震华, 向阳, 薛永生, 赵杠. 一种并行处理Skyline查询的有效方法. 自动化学报, 2010, 36(7): 968-975)[14] Huang Z, Lu H, Ooi B C, Tung A K H. Continuous skyline queries for moving objects. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(12): 1645-1658[15] Lee M W, Hwang S W. Continuous skylining on volatile moving data. In: Proceedings of the IEEE International Conference on Data Engineering . Washington D.C., USA: IEEE, 2009. 1568-1575[16] Cheng R, Kalashnikov D V, Prabhakar S. Querying imprecise data in moving object environments. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(9): 1112-1127[17] Ding Xiao-Feng, Lu Yan-Sheng, Pan Peng, Hong Liang, Wei Qiong. U-Tree based indexing method for uncertain moving objects. Journal of Software, 2008, 19(10): 2696-2705(丁晓锋, 卢炎生, 潘鹏, 洪亮, 魏琼. 基于U-tree的不确定移动对象索引策略. 软件学报, 2008, 19(10): 2696-2705)[18] Benetis R, Jensen C, Karciauskas G, Saltenis S. Nearest neighbor and reverse nearest neighbor queries for moving objects. In: Proceedings of the International Database Engineering and Applications Symposium. Edmonton, Canada: IEEE, 2002. 44-53
  • 加载中
计量
  • 文章访问数:  2276
  • HTML全文浏览量:  68
  • PDF下载量:  768
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-09
  • 修回日期:  2011-03-02
  • 刊出日期:  2011-07-20

目录

    /

    返回文章
    返回