2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种分离低维信号的ICA快速算法

汤影 李建平 吴淮

汤影, 李建平, 吴淮. 一种分离低维信号的ICA快速算法. 自动化学报, 2011, 37(7): 794-799. doi: 10.3724/SP.J.1004.2011.00794
引用本文: 汤影, 李建平, 吴淮. 一种分离低维信号的ICA快速算法. 自动化学报, 2011, 37(7): 794-799. doi: 10.3724/SP.J.1004.2011.00794
TANG Ying, LI Jian-Ping, WU Huai. A Simple and Accurate ICA Algorithm for Separating Mixtures of Up to Four Independent Components. ACTA AUTOMATICA SINICA, 2011, 37(7): 794-799. doi: 10.3724/SP.J.1004.2011.00794
Citation: TANG Ying, LI Jian-Ping, WU Huai. A Simple and Accurate ICA Algorithm for Separating Mixtures of Up to Four Independent Components. ACTA AUTOMATICA SINICA, 2011, 37(7): 794-799. doi: 10.3724/SP.J.1004.2011.00794

一种分离低维信号的ICA快速算法

doi: 10.3724/SP.J.1004.2011.00794

A Simple and Accurate ICA Algorithm for Separating Mixtures of Up to Four Independent Components

  • 摘要: 介绍了一种基于低维反对称矩阵指数的快速独立分量分析算法. 由于算法中牵涉到的矩阵指数具有解析闭合形式的表达, 因而算法中使用到的矩阵指数以及最优下降方向均可解析地得到. 另外, 我们纠正了在别的文献中建立的四维反对称矩阵指数表达式中的两个错误. 最后, 我们用仿真验证了算法. 实验结果表明: 相比于广为应用的Extended InfoMax和FastICA算法, 本文算法能得到更佳的分离性能.
  • [1] Choi S, Cichocki S, Park H M, Lee S Y. Blind source separation and independent component analysis: a review. Neural Information Processing-Letters and Reviews, 2005, 6(1): 1-57 [2] Xiao Ming, Xie Sheng-Li, Fu Yu-Li. Underdetermined blind source separation algorithm based on normal vector of hyperplane. Acta Automatica Sinica, 2008, 34(2): 142-149(in Chinese)[3] Tang Ying, Li Jian-Ping. A new algorithm of ICA: using the parameterized orthogonal matrixes of any dimensions. Acta Automatica Sinica, 2008, 34(1): 31-39(in Chinese)[4] Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 1995, 7(6): 1129-1159[5] Ashi H A, Cummings L J, Matthews P C. Comparison of methods for evaluating functions of a matrix exponential. Applied Numerical Mathematics, 2009, 59(3-4): 468-486[6] Abrudan T E, Eriksson J, Koivunen V. Steepest descent algorithms for optimization under unitary matrix constraint. IEEE Transactions on Signal Processing, 2008, 56(3): 1134-1147[7] Fiori S. Quasi-geodesic neural learning algorithms over the orthogonal group: a tutorial. Journal of Machine Learning Research, 2005, 6: 743-781[8] Fiori S, Tanaka T. An algorithm to compute averages on matrix lie groups. IEEE Transactions on Signal Processing, 2009, 57(12): 4734-4743[9] Nishimori Y, Akaho S. Learning algorithms utilizing quasi-geodesic flows on the stiefel manifold. Neurocomputing, 2005, 67: 106-135 [10] Plumbley M D. Algorithms for nonnegative independent component analysis. IEEE Transactions on Neural Networks, 2003, 14(3): 534-543[11] Gallier J, Xu D. Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices. International Journal of Robotics and Automation, 2002, 17(4): 10-20[12] Moakher M. Means and averaging in the group of rotations. SIAM Journal on Matrix Analysis and Applications, 2002, 24(1): 1-16 [13] Politi T. A formula for the exponential of a real skew-symmetric matrix of order 4. Bit Numerical Mathematics, 2001, 41(4): 842-845[14] Pham D T, Garrat P. Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE Transactions on Signal Processing, 1997, 45(7): 1712-1725[15] Xu L. One-bit-matching theorem for ICA, convex-concave programming on polyhedral set, and distribution approximation for combinatorics. Neural Computation, 2007, 19(2): 546-569[16] Lee T W, Girolami M, Sejnowski T J. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 1999, 11(2): 417-441[17] Shen H, Kleinsteuber M, Huper K. Local convergence analysis of fastICA and related algorithms. IEEE Transactions on Neural Networks, 2008, 19(6): 1022-1032[18] Gloub G H, Loan C F V. Matrix Computation (Third Edition). Baltimore: The John Hopkins University Press, 1996. 341-342
  • 加载中
计量
  • 文章访问数:  1937
  • HTML全文浏览量:  57
  • PDF下载量:  894
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-16
  • 修回日期:  2011-02-22
  • 刊出日期:  2011-07-20

目录

    /

    返回文章
    返回