2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Nyström 低阶近似的半监督流形排序图像检索

傅向华 李坚强 王志强 杜文峰

傅向华, 李坚强, 王志强, 杜文峰. 基于Nyström 低阶近似的半监督流形排序图像检索. 自动化学报, 2011, 37(7): 787-793. doi: 10.3724/SP.J.1004.2011.00787
引用本文: 傅向华, 李坚强, 王志强, 杜文峰. 基于Nyström 低阶近似的半监督流形排序图像检索. 自动化学报, 2011, 37(7): 787-793. doi: 10.3724/SP.J.1004.2011.00787
FU Xiang-Hua, LI Jian-Qiang, WANG Zhi-Qiang, DU Wen-Feng. Semi-supervised Manifold-ranking-based Image Retrieval with Low-rank Nyström Approximation. ACTA AUTOMATICA SINICA, 2011, 37(7): 787-793. doi: 10.3724/SP.J.1004.2011.00787
Citation: FU Xiang-Hua, LI Jian-Qiang, WANG Zhi-Qiang, DU Wen-Feng. Semi-supervised Manifold-ranking-based Image Retrieval with Low-rank Nyström Approximation. ACTA AUTOMATICA SINICA, 2011, 37(7): 787-793. doi: 10.3724/SP.J.1004.2011.00787

基于Nyström 低阶近似的半监督流形排序图像检索

doi: 10.3724/SP.J.1004.2011.00787

Semi-supervised Manifold-ranking-based Image Retrieval with Low-rank Nyström Approximation

  • 摘要: 实际图像检索过程中,用户提供的相关反馈有限,但存在大量未标记图像数据. 本文在前期半监督流形图像检索工作的基础上,提出一种基于Nystrm低阶 近似的半监督流形排序图像检索方法.通过采用半监督的流形正则化框架, 将图像数据嵌入到低维流形结构中进行分类排序,以充分利用大量未标记数据, 并兼顾分类误差、数据分布的几何结构以及分类函数的复杂性.针对半监督学习速度缓慢的问题, 基于Nystrm低阶近似对学习过程进行加速.在较大规模的Corel图像数据集上进行了检索实验, 实验结果表明该方法能获得较好的效果.
  • [1] Smeulders A W M, Worring M, Santini S, Gupta A, Jain R. Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12): 1349-1380[2] Liu Qing, Xu Lu-Ping, Ma Yi-De, Wang Yong. Image NMI feature extraction and retrieval method based on pulse coupled neural networks. Acta Automatica Sinica, 2010, 36(7): 931-938(刘勍, 许录平, 马义德, 王勇. 基于脉冲耦合神经网络的图像NMI特征提取及检索方法. 自动化学报, 2010, 36(7): 931-938[3] Liu Y, Zhang D S, Lu G J, Ma W Y. A survey of content-based image retrieval with high-level semantics. Pattern Recognition, 2007, 40(1): 262-282 [4] Arevalillo-Herraez M, Ferri F J, Domingo J. A naive relevance feedback model for content-based image retrieval using multiple similarity measures. Pattern Recognition, 43(3): 619-629[5] Zhou Z H, Chen K J, Dai H B. Enhancing relevance feedback in image retrieval using unlabeled data. ACM Transactions on Information Systems, 2006, 24(2): 219-244[6] Luo Si-Wei, Zhao Lian-Wei. Manifold learning algorithms based on spectral graph theory. Journal of Computer Research and Development, 2006, 43(7): 1173-1179(罗四维, 赵连伟. 基于谱图理论的流形学习算法. 计算机研究与发展, 2006, 43(7): 1173-1179)[7] Zhou D Y, Weston J, Gretton A, Bousquet O, Scholkopf B. Ranking on data manifolds. Advances in Neural Information Processing Systems. Cambridge: The MIT Press, 2004. 169-176[8] He J R, Li M J, Zhang H J, Tong H H, Zhang C S. Generalized manifold-ranking-based image retrieval. IEEE Transactions on Image Processing, 2006, 15(10): 3170-3177[9] Wang C, Zhao J, He X F, Chen C, Bu J J. Image retrieval using nonlinear manifold embedding. Neurocomputing, 2009, 72(16-18): 3922-3929[10] Lin Y Y, Liu T L, Chen H T. Semantic manifold learning for image retrieval. In: Proceedings of the 13th Annual ACM International Conference on Multimedia. New York, USA: ACM, 2005. 249-258[11] Li Jie, Cheng Yi-Min, Ge Shi-Ming, Zhang Ling. Integrated manifold ranking and region matching for image retrieval. Journal of Chinese Computer Systems, 2008, 29(3): 511-515(李杰, 程义民, 葛仕明, 张玲. 结合流形排序和区域匹配的图像检索. 小型微型计算机系统, 2008, 29(3): 511-515)[12] Wang Zhi-Qiang, Fu Xiang-Hua, Zhao Liang-Hui, Du Wen-Feng. Manifold based semi-supervised learning for content-based image retrieval. Geomatics and Information Science of Wuhan University, 2009, 34(8): 928-931, 935(王志强, 傅向华, 赵良辉, 杜文峰. 基于内容的半监督流体图像检索. 武汉大学学报信息科学版, 2009, 34(8): 928-931, 935)[13] Belkin M, Niyogi P, Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. The Journal of Machine Learning Research, 2006, 7: 2399-2434[14] Zhang K, Tsang I W, Kwok J T. Improved Nystrm low-rank approximation and error analysis. In: Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM, 2008. 1232-1239[15] Huijsmans D P, Sebe N. How to complete performance graphs in content-based image retrieval: add generality and normalize scope. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2): 245-251
  • 加载中
计量
  • 文章访问数:  2844
  • HTML全文浏览量:  42
  • PDF下载量:  1000
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-21
  • 修回日期:  2010-11-24
  • 刊出日期:  2011-07-20

目录

    /

    返回文章
    返回