2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于经典理论的协作跟踪与干扰抑制技术

黄超 何衍 叶旭东

黄超, 何衍, 叶旭东. 基于经典理论的协作跟踪与干扰抑制技术. 自动化学报, 2011, 37(6): 766-772. doi: 10.3724/SP.J.1004.2011.00766
引用本文: 黄超, 何衍, 叶旭东. 基于经典理论的协作跟踪与干扰抑制技术. 自动化学报, 2011, 37(6): 766-772. doi: 10.3724/SP.J.1004.2011.00766
HUANG Chao, HE Yan, YE Xu-Dong. Cooperative Tracking and Disturbance Suppression: A Classical Approach. ACTA AUTOMATICA SINICA, 2011, 37(6): 766-772. doi: 10.3724/SP.J.1004.2011.00766
Citation: HUANG Chao, HE Yan, YE Xu-Dong. Cooperative Tracking and Disturbance Suppression: A Classical Approach. ACTA AUTOMATICA SINICA, 2011, 37(6): 766-772. doi: 10.3724/SP.J.1004.2011.00766

基于经典理论的协作跟踪与干扰抑制技术

doi: 10.3724/SP.J.1004.2011.00766

Cooperative Tracking and Disturbance Suppression: A Classical Approach

  • 摘要: 研究了当存在确定性干扰时, 多智能体系统的协作跟踪控制问题. 系统中个体之间的通信拓扑由时不变的有向图网络构成, 而每个个体的动态特性均由单输入单输出的线性系统描述. 本文将多智能体的分布式协调控制问题理解成并归结为输出调节问题来解决, 并由此提出了一种基于个体间相对输出反馈机制以及经典极点配置理论的分布式协作控制律. “内模原理”的使用也因此显得尤其重要. 此外, 为了分析所提出的控制律的稳定性, 本文还引入了复根轨迹的概念, 这是对经典根轨迹技术的推广, 它在本文中的有效应用显示了其潜在的应用价值.
  • [1] Cortes J, Martinez S, Bullo F. Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Transactions on Automatic Control, 2006, 51(8): 1289-1298[2] Lin J, Morse A S, Anderson B D O. The multi-agent rendezvous problem-the asynchronous case. In: Proceedings of the 43rd IEEE Control Conference on Disision and Control. Atlantis, Paradise Island, Bahamas: IEEE, 2004. 1926-1931[3] Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control, 2003, 51(3): 401-420[4] Gazi V, Passino K M. Stability analysis of swarms. IEEE Transactions on Automatic Control, 2003, 48(4): 692-697[5] Liu B, Chu T G, Wang L. Flocking of multi-vehicle systems with a leader. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006. 5948-5953[6] Tanner H G, Jadbabaie A, Pappas G J. Stable flocking of mobile agents, Part I: fixed topology. In: Proceedings of the 42nd Control Conference on Decision and Control. Maui, Hawaii, USA: IEEE, 2003. 2010-2015[7] Sorensen N, Ren W. A unified formation control scheme with a single or multiple leaders. In: Proceedings of the American Control Conference. New York, USA: IEEE, 2007. 5412-5418[8] Wu Jun, Lu Yu-Ping. Stability analysis of multi-robot system based on network communication. Acta Automatica Sinica, 2010, 36(12): 1706-1710 (in Chinese) [9] Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004, 49(9): 1465-1476[10] Lafferriere G, Williams A, Caughman J, Veerman J J P. Decentralized control of vehicle formations. Systems and Control Letters, 2005, 54(9): 899-910[11] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233[12] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533[13] Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50(5): 655-661[14] Chen Yang-Yang, Tian Yu-Ping. Directed coordinated control for multi-agent formation motion on a set of given curves. Acta Automatica Sinica, 2009, 35(12): 1541-1549 (in Chinese)[15] She Y Y, Fang H J. Fast distributed consensus control for second-order multi-agent systems. In: Proceedings of the Chinese Control and Decision Conference. Xuzhou, China: IEEE, 2010. 87-92[16] Jiang F C, Wang L, Jia Y M. Consensus in leaderless networks of high-order-integrator agents. In: Proceedings of the American Control Conference. St. Louis, Missouri, USA: IEEE, 2009. 4458-4463[17] Wang Y T, Zhou W N, Li M H. Consensus problem of the first-order linear network and the second-order linear network. In: Proceedings of the Chinese Control and Decision Conference. Xuzhou, China: IEEE, 2010. 4124-4128[18] Chen Jie, Yu Miao, Dou Li-Hua, Gan Ming-Gang. A fast averaging synchronization algorithm for clock oscillators in nonlinear dynamical network with arbitrary time-delays. Acta Automatica Sinica, 2010, 36(6): 873-880 (in Chinese)[19] Li Z. Accelerated consensus protocol for distributed networked multi-agent system with interconnected topology: a specific architecture. In: Proceedings of International Conference on Information Engineering and Computer Science. Wuhan, China: IEEE, 2009. 1-4[20] Fiedler M. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 1973, 23(98): 298-305[21] Merris R. Laplacian matrices of a graph: a survey. Linear Algebra and Its Applications, 1994, 197: 143-176 [22] Raven F H. Automatic Control Engineering (5th Edition). New York: McGraw-Hill, 1995, 279-319[23] Wang Xiao-Wu. The Basis of Modern Control Theory. Beijing: China Machine Press, 1998, 158-162 (in Chinese)
  • 加载中
计量
  • 文章访问数:  2239
  • HTML全文浏览量:  42
  • PDF下载量:  943
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-17
  • 修回日期:  2011-03-01
  • 刊出日期:  2011-06-20

目录

    /

    返回文章
    返回