[1]
|
Lu Yang, Han Jiang-Hong, Gao Jun. Research on the minimal upper bound of the number of hidden nodes in binary neural networks. Pattern Recognition and Artificial Intelligence, 2000, 13(3): 254-257(陆阳, 韩江洪, 高隽. 二进神经网络隐元数目最小上界研究. 模式识别与人工智能, 2000, 13(3): 254-257)[2] Chen F Y, Chen G R, He G L, Xu X B, He Q B. Universal perceptron and DNA-like learning algorithm for binary neural networks: LSBF and PBF implementations. IEEE Transactions on Neural Networks, 2009, 20(10): 1645-1658[3] Chen F Y, Chen G R, He Q B, He G L, Xu X B. Universal perceptron and DNA-like learning algorithm for binary neural networks: non-LSBF implementation. IEEE Transactions on Neural Networks, 2009, 20(8): 1293-1301[4] Lu Y, Yang J, Wang Q, Huang Z J. The upper bound of the minimal number of hidden neurons for the parity problem by binary neural networks. Science China Information Sciences, to be published[5] Chua L O. CNN: a paradigm for complexity. Visions of Nonlinear Science in the 21st Century. Singapore: World Scientific, 1999[6] Chen F Y, He G L, Chen G R. Realization of boolean functions via CNN: mathematical theory, LSBF and template design. IEEE Transactions on Circuits and Systems I: Regular Papers, 2006, 53(10): 2203-2213[7] Lu Yang, Han Jiang-Hong, Zhang Wei-Yong. Logical relation determination criteria and equivalence rule extraction on binary neural networks. Pattern Recognition and Artificial Intelligence, 2001, 14(2): 171-176(陆阳, 韩江洪, 张维勇. 二进神经网络逻辑关系判据及等价性规则提取. 模式识别与人工智能, 2001, 14(2): 171-176)[8] Lu Yang, Wei Zhen, Gao Jun, Han Jiang-Hong. Logical meaning of Hamming sphere and its general judgement method in binary neural networks. Journal of Computer Research and Development, 2002, 39(1): 79-86(陆阳, 魏臻, 高隽, 韩江洪. 二进神经网络中汉明球的逻辑意义及一般判别方法. 计算机研究与发展, 2002, 39(1): 79-86)[9] Lu Yang, Han Jiang-Hong, Wei Zhen. A general judging and constructing method of SP functions in binary neural networks. Acta Automatica Sinica, 2003, 29(2): 234-241[10] Ma Xiao-Min, Yang Yi-Xian, Zhang Zhao-Zhi. A new frame-work and some results for threshold function. Chinese Journal of Computers, 2000, 23(3): 225-230(马晓敏, 杨义先, 章照止. 一种新的阈值函数的分析框架及有关结论. 计算机学报, 2000, 23(3): 225-230)[11] Lu Yang, Han Jiang-Hong, Zhang Wei-Yong. Study of cartesian sphere in binary neural networks. Pattern Recognition and Artificial Intelligence, 2004, 17(3): 368-373(陆阳, 韩江洪, 张维勇. 二进神经网络中笛卡尔球的研究. 模式识别与人工智能, 2004, 17(3): 368-373)[12] Wegener I. The Complexity of Boolean Functions. New York: Wiley, 1987[13] Crounse K R, Fung E L, Chua L O. Efficient implementation of neighborhood logic for cellular automata via the cellular neural network universal machine. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1997, 44(4): 355-361[14] Nemes L, Chua L O, Roska A T. Implementation of arbitrary boolean functions on a CNN universal machine. International Journal of Circuit Theory and Applications, 1998, 26(6): 593-610[15] Haykin S. Neural Networks: A Comprehensive Foundation (Second Edition). New Jersey: Prentice Hall, 1998[16] Negnevitsky M. Artificial Intelligence: A Guide to Intelligent Systems (Second Edition). New Jersey: Addision-Wesley, 2004[17] Hassoun M H. Fundamentals of Artificial Neural Networks. Massachusetts: The MIT Press, 1995[18] Gray D L, Michel A N. A training algorithm for binary feedforward neural networks. IEEE Transactions on Neural Networks, 1992, 3(2): 176-194[19] Hua Qiang, Zheng Qi-Lun. The Hamming-graph learning algorithm of BNN. Chinese Journal of Computer, 2001, 24(11): 1250-1255(华强, 郑启伦. 二进神经网络的汉明图学习算法. 计算机学报, 2001, 24(11): 1250-1255)[20] Kim J H, Park S K. The geometrical learning of binary neural networks. IEEE Transactions on Neural Networks, 1995, 6(1): 237-247
|