2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二进神经网络中的汉明球突及其线性可分性

杨娟 陆阳 黄镇谨 王强

杨娟, 陆阳, 黄镇谨, 王强. 二进神经网络中的汉明球突及其线性可分性. 自动化学报, 2011, 37(6): 737-745. doi: 10.3724/SP.J.1004.2011.00737
引用本文: 杨娟, 陆阳, 黄镇谨, 王强. 二进神经网络中的汉明球突及其线性可分性. 自动化学报, 2011, 37(6): 737-745. doi: 10.3724/SP.J.1004.2011.00737
YANG Juan, LU Yang, HUANG Zhen-Jin, WANG Qiang. Hamming Sphere Dimple in Binary Neural Networks and Its Linear Separability. ACTA AUTOMATICA SINICA, 2011, 37(6): 737-745. doi: 10.3724/SP.J.1004.2011.00737
Citation: YANG Juan, LU Yang, HUANG Zhen-Jin, WANG Qiang. Hamming Sphere Dimple in Binary Neural Networks and Its Linear Separability. ACTA AUTOMATICA SINICA, 2011, 37(6): 737-745. doi: 10.3724/SP.J.1004.2011.00737

二进神经网络中的汉明球突及其线性可分性

doi: 10.3724/SP.J.1004.2011.00737

Hamming Sphere Dimple in Binary Neural Networks and Its Linear Separability

  • 摘要: 对于二进神经网络,剖析其神经元的逻辑意义对网络的规则提取是十分重要的, 而目前每个神经元所表达的线性结构的逻辑意义仍没有完全解决, 一部分线性函数的结构及其逻辑意义尚不明确. 本文在寻找线性可分结构的过程中,提出了汉明球突的概念, 给出其是否线性可分的判定方法,并得到二进神经元与线性可分的汉明球突等价的充要条件, 从而建立了判别线性可分的汉明球突的一般方法,并通过实例验证了该方法的有效性.
  • [1] Lu Yang, Han Jiang-Hong, Gao Jun. Research on the minimal upper bound of the number of hidden nodes in binary neural networks. Pattern Recognition and Artificial Intelligence, 2000, 13(3): 254-257(陆阳, 韩江洪, 高隽. 二进神经网络隐元数目最小上界研究. 模式识别与人工智能, 2000, 13(3): 254-257)[2] Chen F Y, Chen G R, He G L, Xu X B, He Q B. Universal perceptron and DNA-like learning algorithm for binary neural networks: LSBF and PBF implementations. IEEE Transactions on Neural Networks, 2009, 20(10): 1645-1658[3] Chen F Y, Chen G R, He Q B, He G L, Xu X B. Universal perceptron and DNA-like learning algorithm for binary neural networks: non-LSBF implementation. IEEE Transactions on Neural Networks, 2009, 20(8): 1293-1301[4] Lu Y, Yang J, Wang Q, Huang Z J. The upper bound of the minimal number of hidden neurons for the parity problem by binary neural networks. Science China Information Sciences, to be published[5] Chua L O. CNN: a paradigm for complexity. Visions of Nonlinear Science in the 21st Century. Singapore: World Scientific, 1999[6] Chen F Y, He G L, Chen G R. Realization of boolean functions via CNN: mathematical theory, LSBF and template design. IEEE Transactions on Circuits and Systems I: Regular Papers, 2006, 53(10): 2203-2213[7] Lu Yang, Han Jiang-Hong, Zhang Wei-Yong. Logical relation determination criteria and equivalence rule extraction on binary neural networks. Pattern Recognition and Artificial Intelligence, 2001, 14(2): 171-176(陆阳, 韩江洪, 张维勇. 二进神经网络逻辑关系判据及等价性规则提取. 模式识别与人工智能, 2001, 14(2): 171-176)[8] Lu Yang, Wei Zhen, Gao Jun, Han Jiang-Hong. Logical meaning of Hamming sphere and its general judgement method in binary neural networks. Journal of Computer Research and Development, 2002, 39(1): 79-86(陆阳, 魏臻, 高隽, 韩江洪. 二进神经网络中汉明球的逻辑意义及一般判别方法. 计算机研究与发展, 2002, 39(1): 79-86)[9] Lu Yang, Han Jiang-Hong, Wei Zhen. A general judging and constructing method of SP functions in binary neural networks. Acta Automatica Sinica, 2003, 29(2): 234-241[10] Ma Xiao-Min, Yang Yi-Xian, Zhang Zhao-Zhi. A new frame-work and some results for threshold function. Chinese Journal of Computers, 2000, 23(3): 225-230(马晓敏, 杨义先, 章照止. 一种新的阈值函数的分析框架及有关结论. 计算机学报, 2000, 23(3): 225-230)[11] Lu Yang, Han Jiang-Hong, Zhang Wei-Yong. Study of cartesian sphere in binary neural networks. Pattern Recognition and Artificial Intelligence, 2004, 17(3): 368-373(陆阳, 韩江洪, 张维勇. 二进神经网络中笛卡尔球的研究. 模式识别与人工智能, 2004, 17(3): 368-373)[12] Wegener I. The Complexity of Boolean Functions. New York: Wiley, 1987[13] Crounse K R, Fung E L, Chua L O. Efficient implementation of neighborhood logic for cellular automata via the cellular neural network universal machine. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1997, 44(4): 355-361[14] Nemes L, Chua L O, Roska A T. Implementation of arbitrary boolean functions on a CNN universal machine. International Journal of Circuit Theory and Applications, 1998, 26(6): 593-610[15] Haykin S. Neural Networks: A Comprehensive Foundation (Second Edition). New Jersey: Prentice Hall, 1998[16] Negnevitsky M. Artificial Intelligence: A Guide to Intelligent Systems (Second Edition). New Jersey: Addision-Wesley, 2004[17] Hassoun M H. Fundamentals of Artificial Neural Networks. Massachusetts: The MIT Press, 1995[18] Gray D L, Michel A N. A training algorithm for binary feedforward neural networks. IEEE Transactions on Neural Networks, 1992, 3(2): 176-194[19] Hua Qiang, Zheng Qi-Lun. The Hamming-graph learning algorithm of BNN. Chinese Journal of Computer, 2001, 24(11): 1250-1255(华强, 郑启伦. 二进神经网络的汉明图学习算法. 计算机学报, 2001, 24(11): 1250-1255)[20] Kim J H, Park S K. The geometrical learning of binary neural networks. IEEE Transactions on Neural Networks, 1995, 6(1): 237-247
  • 加载中
计量
  • 文章访问数:  2277
  • HTML全文浏览量:  60
  • PDF下载量:  796
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-20
  • 修回日期:  2011-02-18
  • 刊出日期:  2011-06-20

目录

    /

    返回文章
    返回