2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单领航者相对位置测量的多AUV协同导航系统定位性能分析

李闻白 刘明雍 李虎雄 陈学永

李闻白, 刘明雍, 李虎雄, 陈学永. 基于单领航者相对位置测量的多AUV协同导航系统定位性能分析. 自动化学报, 2011, 37(6): 724-736. doi: 10.3724/SP.J.1004.2011.00724
引用本文: 李闻白, 刘明雍, 李虎雄, 陈学永. 基于单领航者相对位置测量的多AUV协同导航系统定位性能分析. 自动化学报, 2011, 37(6): 724-736. doi: 10.3724/SP.J.1004.2011.00724
LI Wen-Bai, LIU Ming-Yong, LI Hu-Xiong, CHEN Xue-Yong. Localization Performance Analysis of Cooperative Navigation System for Multiple AUVs Based on Relative Position Measurements with a Single Leader. ACTA AUTOMATICA SINICA, 2011, 37(6): 724-736. doi: 10.3724/SP.J.1004.2011.00724
Citation: LI Wen-Bai, LIU Ming-Yong, LI Hu-Xiong, CHEN Xue-Yong. Localization Performance Analysis of Cooperative Navigation System for Multiple AUVs Based on Relative Position Measurements with a Single Leader. ACTA AUTOMATICA SINICA, 2011, 37(6): 724-736. doi: 10.3724/SP.J.1004.2011.00724

基于单领航者相对位置测量的多AUV协同导航系统定位性能分析

doi: 10.3724/SP.J.1004.2011.00724

Localization Performance Analysis of Cooperative Navigation System for Multiple AUVs Based on Relative Position Measurements with a Single Leader

  • 摘要: 自主水下航行器 (Autonomous underwater vehicle, AUV) 的协同导航是解决水下导航定位问题的重要方法, 其中导航系统的定位误差增长特性是衡量其定位性能的关键指标. 本文针对单领航者相对位置测量的多 AUV 协同导航系统, 利用扩展卡尔曼滤波方法建立了导航系统的整体定位误差关于相对位置量测误差的传递方程. 在此基础上, 通过求解系统定位误差随时间演化的代数黎卡提方程, 得到了其在稳态情形下的方差上界估计. 理论分析表明, 单领航 AUV 协同导航系统的整体定位误差有界收敛且与初始化滤波方差无关, 具有良好的综合性能. 最后, 仿真实例验证了文中理论分析结果的正确性.
  • [1] Kinsey J, Eustice R, Whitcomb L. A survey of underwater vehicle navigation: recent advances and new challenges. In: Proceedings of the 7th IFAC Conference on Maneuvering and Control of Marine Craft. Lisbon, Portugal: IFAC, 2006. 1-12[2] Eustice R, Whitcomb L, Singh H, Grund M. Recent advances in synchronous-clock one-way-travel-time acoustic navigation. In: Proceedings of the OCEANS. Boston, USA: IEEE, 2006. 1-6[3] Stutters L, Liu H, Tiltman C, Brown D J. Navigation technologies for autonomous underwater vehicles. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2008, 38(4): 581-589[4] Chanserasekhar V, Seah W K G, Choo Y S, Ee H V. Localization in underwater sensor networks: survey and challenges. In: Proceedings of the 1st ACM International Workshop on Underwater Networks. New York, USA: ACM, 2006. 33-40[5] Liu Ming-Yong, Li Wen-Bai, Pei Xuan. Convex optimization algorithms for cooperative localization in autonomous underwater vehicles. Acta Automatica Sinica, 2010, 36(5): 704-710[6] Freitag L, Grund M, Singh H, Partan J, Koski P, Ball K. The WHOI micro-modem: an acoustic communications and navigation system for multiple platforms. In: Proceedings of the MTS/IEEE OCEANS. Washington D. C., USA: IEEE, 2005. 1086-1092[7] Singh S, Grund M, Bingham B, Eustice R, Singh H, Freitag L. Underwater acoustic navigation with the WHOI micro-modem. In: Proceedings of the OCEANS. Boston, USA: IEEE, 2006. 1-4[8] Larsen T D, Andersen N A, Ravn O, Poulsen N K. Incorporation of time delayed measurements in a discrete-time Kalman filter. In: Proceedings of the 37th IEEE Conference on Decision and Control. Florida, USA: IEEE, 1998. 3972-3977[9] Baccou P, Jouvencel B, Creuze V. Single beacon acoustic for AUV navigation. In: Proceedings of the 10th International Conference on Advanced Robotics. Budapest, Hungary: IEEE, 2001. 413-418[10] Baccou P, Jouvencel B, Creuze V, Rabaud D. Cooperative positioning and navigation for multiple AUV operations. In: Proceedings of the MTS/IEEE Conference and Exhibition OCEANS. Honolulu, USA: IEEE, 2001. 1816-1821[11] Baccou P, Jouvencel B. Simulation results, post-processing experimentation and comparison results for navigation, homing and multiple vehicle operations with a new positioning method using a transponder. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics and Systems. Las Vegas, USA: IEEE, 2003. 811-817[12] Vaganay J, Baccou P, Jouvencel B. Homing by acoustic ranging to a single beacon. In: Proceedings of the MTS/ IEEE Conference and Exhibition OCEANS. Providence, USA: IEEE, 2000. 1457-1462[13] Gadre A, Stilwell D J. Toward underwater navigation based on range measurements from a single location. In: Proceedings of IEEE International Conference on Robotics and Automation. New Orleans, USA: IEEE, 2004. 4472-4477[14] Gadre A, Stilwell D J. Underwater navigation in the presence of unknown currents based on range measurements from a single location. In: Proceedings of the American Control Conference. Minneapolis, USA: IEEE, 2005. 656-661[15] Gadre A, Stilwell D J. A complete solution to underwater navigation in the presence of unknown currents based on range measurements from a single location. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics and Systems. Edmonton, Canada: IEEE, 2005. 1420-1425[16] Gadre A, Mach J, Stilwell D, Wick C. Design of a prototype miniature autonomous underwater vehicle. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics and Systems. Las Vegas, USA: IEEE, 2003. 842-846[17] Gadre A. Observability Analysis in Navigation Systems with an Underwater Vehicle Application [Ph.D. dissertation], Virginia Polytechnic Institute and State University, USA, 2007[18] Kalwa J. The GREX-project: coordination and control of cooperating heterogeneous unmanned systems in uncertain environments. In: Proceedings of the EUROPE OCEANS. Biloxi, USA: IEEE, 2009. 1-9[19] Engel R, Kalwa J. Relative positioning of multiple underwater vehicles in the GREX project. In: Proceedings of the EUROPE OCEANS. Bremen, Germany: IEEE, 2009. 1-7[20] Engel R, Kalwa J. Coordinated navigation of multiple underwater vehicles. In: Proceedings of the 17th International Offshore and Polar Engineering Conference. Lisbon, Portugal: ISOPE, 2007. 1066-1073[21] Bahr A, Leonard J, Fallon M. Cooperative localization for autonomous underwater vehicles. International Journal of Robotics Research, 2009, 28(6): 714-728[22] Bahr A. Cooperative Localization for Autonomous Underwater Vehicles [Ph.D. dissertation], Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, USA, 2009[23] Chen Gong-Ning. Matrix Theory and Applications (Second Edition). Beijing: Science Press, 2007. 140-190(陈公宁. 矩阵理论与应用(第二版). 北京: 科学出版社, 2007. 140-190)[24] Petrich J, Woolsey C, Stilwell D. Planar flow model identification for improved navigation of small AUVs. Ocean Engineering, 2009, 36(1): 119-131 [25] Petrich J, Woolsey C, Stilwell D. Identification of a low-complexity flow field model for AUV applications. In: Proceedings of the MTS/IEEE OCEANS. Washington D. C., USA: IEEE, 2005. 1595-1602[26] Li Dai-Jin, Luo Kai, Zhang Yu-Wen, Dang Jian-Jun. Studies on fixed-depth control of supercavitating vehicles. Acta Automatica Sinica, 2010, 36(3): 421-426[27] Li Jia-Wang, Song Bao-Wei, Shao Cheng. Tracking control of autonomous underwater vehicles with internal movingmass. Acta Automatica Sinica, 2008, 34(10): 1319-1323[28] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2005, 92(3): 401-422[29] Zhao Lin, Wang Xiao-Xu, Sun Ming, Ding Ji-Cheng, Yan Chao. Adaptive UKF filtering algorithm based on maximum a posterior estimation and exponential weighting. Acta Automatica Sinica, 2010, 36(7): 1007-1019(赵琳, 王小旭, 孙明, 丁继成, 闫超. 基于极大后验估计和指数加权的自适应UKF滤波算法. 自动化学报, 2010, 36(7): 1007-1019)
  • 加载中
计量
  • 文章访问数:  2252
  • HTML全文浏览量:  62
  • PDF下载量:  1287
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-01
  • 修回日期:  2011-02-18
  • 刊出日期:  2011-06-20

目录

    /

    返回文章
    返回