2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性多核学习

武征鹏 张学工

武征鹏, 张学工. 弹性多核学习. 自动化学报, 2011, 37(6): 693-699. doi: 10.3724/SP.J.1004.2011.00693
引用本文: 武征鹏, 张学工. 弹性多核学习. 自动化学报, 2011, 37(6): 693-699. doi: 10.3724/SP.J.1004.2011.00693
WU Zheng-Peng, ZHANG Xue-Gong. Elastic Multiple Kernel Learning. ACTA AUTOMATICA SINICA, 2011, 37(6): 693-699. doi: 10.3724/SP.J.1004.2011.00693
Citation: WU Zheng-Peng, ZHANG Xue-Gong. Elastic Multiple Kernel Learning. ACTA AUTOMATICA SINICA, 2011, 37(6): 693-699. doi: 10.3724/SP.J.1004.2011.00693

弹性多核学习

doi: 10.3724/SP.J.1004.2011.00693

Elastic Multiple Kernel Learning

  • 摘要: 多核学习 (MKL) 的提出是为了解决多个核矩阵的融合问题, 多核学习求解关于多个核矩阵的最优的线性组合并同时解出对应于这个组合矩阵的支持向量机(SVM)问题. 现有的多核学习的框架倾向于寻找稀疏的组合系数, 但是当有信息的核的比例较高的时候, 对稀疏性的倾向会使得只有少量的核被选中而损失相当的分类信息. 在本文中, 我们提出了弹性多核学习的框架来实现自适应的多核学习. 弹性多核学习的框架利用了一个混合正则化函数来均衡稀疏性和非稀疏性, 多核学习和支持向量机问题都可以视作弹性多核学习的特殊情形. 基于针对多核学习的梯度下降法, 我们导出了针对弹性多核学习的梯度下降法. 仿真数据的结果显示了弹性多核学习方法相对多核学习和支持向量机的优势; 我们还进一步将弹性多核学习应用于基因集合分析问题并取得了有意义的结果; 最后, 我们比较研究了弹性多核学习与另一种利用了非稀疏思想的多核学习.
  • [1] Bonnans J F, Gilbert J C, Lemarechal C, Sagastizabal C. Numerical Optimization: Theoretical and Practical Aspects. Springer-Verlag, 2006[2] Lanckriet G R G, Cristianini N, Bartlett P, Ghaoui L E, Jordan M I. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 2004, 5. 27-72[3] Bach F R, Lanckriet G R G, Jordan M I. Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the 21st International Conference on Machine Learning. New York, USA: ACM 2004. 1-8[4] Kimeldor G S, Wahba G. Some results on tchebycheffian spline functions. Journal of Mathematical Analysis and Applications, 1971, 33(1): 82-95 [5] Schlkopf B, Smola A. Learning with kernels: support vector machines, regularization, optimization, and beyond. Cambridge: The MIT Press, 2002[6] Tibshirani R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B-Statistical Methodology, 1996, 58(1): 267-288[7] Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2005, 67: 301-320[8] Micchelli C A, Pontil M. Learning the kernel function via regularization. Journal of Machine Learning Research, 2005, 6: 1099-1125[9] Rakotomamonjy A, Bach F R, Canu S, Grandvalet Y. SimpleMKL. Journal of Machine Learning Research, 2008, 9: 2491-2521[10] Bonnans J F, Shapiro A. Optimization problems with perturbations: A guided tour. Siam Review, 1998, 40(2): 228-264[11] Sturm J F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods Software, 1999, 11: 625-653[12] Hess K R, Anderson K, Symmans W F, Valero V, Ibrahim N, Mejia J, et al. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. Journal of Clinical Oncology, 2006, 24(26): 4236-4244[13] Fumoleau P, Campone M, Coudert B, Mayer F, Favier L, Ferrant E. Targeting ErbB receptors in breast cancer. Bullitin du Cancer, 2007, 94, F147-170[14] Bando H. Vascular endothelial growth factor and bevacitumab in breast cancer. Breast Cancer, 2007, 14(2): 163-173[15] Buck M B, Knabbe C. TGF-beta signaling in breast cancer. Annals of the New York Academy of Sciences, 2006, , 119-126[16] Hancox R A, Allen M D, Holliday D L, Edwards D R, Pennington C, Guttery D S, et al. Tumour-associated tenascin-C isoforms promote breast cancer cell invasion and growth by matrix metalloproteinase-dependent and independent mechanisms. Breast Cancer Research, 2009, 11(2): 1-13[17] Ilvesaro J M, Merrell M A, Li L, Wakchoure S, Graves D, Brooks S, et al. Toll-like receptor 9 mediates CpG oligonucleotide-induced cellular invasion. Molecular Cancer Research, 2008, (10): 1534-1543[18] Jing J, Tarbutton E, Wilson G, Prekeris R. Rab11-FIP3 is a Rab11-binding protein that regulates breast cancer cell motility by modulating the actin cytoskeleton. European Journal of Cell Biology, 2009, 88(6): 325-341[19] Kloft M, Brefeld U, Laskov P, Sonnenburg S. Non-sparse multiple kernel learning. In: Proceedings of the Neural Information Processing Systems Workshop Vancouver, Canada: Curran Associatos, 2008. 1-4[20] Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Annals of Statistics, 2004, 32(2): 407-451
  • 加载中
计量
  • 文章访问数:  2360
  • HTML全文浏览量:  62
  • PDF下载量:  997
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-05
  • 修回日期:  2011-01-22
  • 刊出日期:  2011-06-20

目录

    /

    返回文章
    返回