2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于局部DCT系数的图像压缩感知编码与重构

潘榕 刘昱 侯正信 汪少初

潘榕, 刘昱, 侯正信, 汪少初. 基于局部DCT系数的图像压缩感知编码与重构. 自动化学报, 2011, 37(6): 674-681. doi: 10.3724/SP.J.1004.2011.00674
引用本文: 潘榕, 刘昱, 侯正信, 汪少初. 基于局部DCT系数的图像压缩感知编码与重构. 自动化学报, 2011, 37(6): 674-681. doi: 10.3724/SP.J.1004.2011.00674
PAN Rong, LIU Yu, HOU Zheng-Xin, WANG Shao-Chu. Image Coding and Reconstruction via Compressed Sensing Based on Partial DCT Coefficients. ACTA AUTOMATICA SINICA, 2011, 37(6): 674-681. doi: 10.3724/SP.J.1004.2011.00674
Citation: PAN Rong, LIU Yu, HOU Zheng-Xin, WANG Shao-Chu. Image Coding and Reconstruction via Compressed Sensing Based on Partial DCT Coefficients. ACTA AUTOMATICA SINICA, 2011, 37(6): 674-681. doi: 10.3724/SP.J.1004.2011.00674

基于局部DCT系数的图像压缩感知编码与重构

doi: 10.3724/SP.J.1004.2011.00674

Image Coding and Reconstruction via Compressed Sensing Based on Partial DCT Coefficients

  • 摘要: 引入了压缩感知(Compressed sensing, CS)理论, 给出了在获取局部二维 离散余弦变换(Discrete cosine transform, DCT)系数的基础上高质量地编码与重构图像的新方法. 研究了在无量化和有量化情况下, 基于局部DCT系数的图像CS最小全变差重构算法. 在对DCT系数进行量化的过程中得到含噪的局部DCT系数, 在此基础上设计了能完成CS重构的图像编解码一般流程, 并构建了实际应用系统. 实验结果表明, 对于稀疏性较强的图像, 在图像编解码系统中结合CS理论与方法能得到高质量的重构图像, 与传统的直接反离散余弦变换(Inverse DCT, IDCT)方法相比, 峰值信噪比(Peak signal to noise ratio, PSNR)最大能提高5dB以上, 对于一般图像, PSNR也有较大提高.
  • [1] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306 [2] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509 [3] Li Shu-Tao, Wei Dan. A survey on compressive sensing. Acta Automatica Sinica, 2009, 35(11): 1369-1377(李树涛, 魏丹. 压缩传感综述. 自动化学报, 2009, 35(11): 1369-1377)[4] Shi Guang-Ming, Liu Dan-Hua, Gao Da-Hua, Liu Zhe, Lin Jie, Wang Liang-Jun. Advances in theory and application of compressed sensing. Acta Electronica Sinica, 2009, 37(5): 1070-1081(石光明, 刘丹华, 高大化, 刘哲, 林杰, 王良君. 压缩感知理论及其研究进展, 电子学报, 2009, 37(5): 1070-1081)[5] Yang J F, Zhang Y, Yin W T. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 288-297 [6] Yao Qing-Dong, Bi Hou-Jie, Wang Zhao-Hua, Xu Meng-Xia. Image Coding Primer (Third Edition). Beijing: Tsinghua University Press, 2006. 50(姚庆东, 毕厚杰, 王兆华, 徐孟侠. 图像编码基础(第三版). 北京: 清华大学出版社, 2006. 50)[7] Xie X C, Yu L J. A new video codec based on compressed sensing. In: Proceedings of the 2nd International Congress on Image and Signal Processing. Tianjin, China: IEEE, 2009. 1-5[8] Sarkis M, Diepold K. Depth map compression via compressed sensing. In: Proceedings of the 16th IEEE International Conference on Image Processing. Cairo, Egypt: IEEE, 2009. 737-740[9] Zhang Y F, Mei S L, Chen Q Q, Chen Z B. A novel image/video coding method based on compressed sensing theory. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA: IEEE, 2008. 1361-1364[10] Candes E J, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3): 969-985[11] Candes E J, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215[12] Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004[13] Candes E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2): 21-30[14] Bjontegaard G. Calculation of Average PSNR Differences between RD-curves, Technical Report VCEG-M33, the 13th Meeting of Video Coding Experts Group-SG16, USA, 2001
  • 加载中
计量
  • 文章访问数:  2335
  • HTML全文浏览量:  81
  • PDF下载量:  1559
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-28
  • 修回日期:  2011-02-28
  • 刊出日期:  2011-06-20

目录

    /

    返回文章
    返回