[1]
|
Cummins M, Newman P. Probabilistic appearance based navigation and loop closing. In: Proceedings of the IEEE International Conference on Robotics and Automation. Rome, Italy: IEEE, 2007. 2042-2048[2] Bazeille S, Filliat D. Combining odometry and visual loop-closure detection for consistent topo-metrical mapping. RAIRO Operations Research, 2010, 44(4): 365-377[3] Angeli A, Filliat D, Doncieux S, Meyer J A. Fast and incremental method for loop-closure detection using bags of visual words. IEEE Transactions on Robotics, 2008, 24(5): 1027-1037 [4] Cummins M, Newman P. FAB-MAP: probabilistic localization and mapping in the space of appearance. The International Journal of Robotics Research, 2008, 27(6): 647-665[5] Ho K L, Newman P. Loop closure detection in SLAM by combining visual and spatial appearance. Robotics and Autonomous Systems, 2006, 54(9): 740-749[6] Callmer J, Granstrm K, Nieto J, Ramos F. Tree of words for visual loop closure detection in urban SLAM. In: Proceedings of the Australasian Conference on Robotics and Automation. Canberra, Australia. 2008. 1-8[7] Williams B, Cummins M, Neira J, Newman P, Reid I, Tardos J. An image-to-map loop closing method for monocular SLAM. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France: IEEE, 2008. 2053-2059[8] Ho K L, Newman P. Detecting loop closure with scene sequences. International Journal of Computer Vision, 2007, 74(3): 261-286 [9] Kim J, Kweon I S. Robust feature matching for loop closing and localization. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA: IEEE, 2007. 3905-3910[10] Zhao Feng-Da, Kong Ling-Fu. An approach to loop-closing based on images matching. Journal of Yanshan University, 2008, 32(2): 115-119(赵逢达, 孔令富. 一种基于图像匹配的闭环检测方法. 燕山大学学报, 2008, 32(2): 115-119)[11] Nister D, Stewenius H. Scalable recognition with a vocabulary tree. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 2161-2168[12] Grauman K, Darrell T. The pyramid match kernel: discriminative classification with sets of image features. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 1458-1465[13] Nister D. An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6): 756-770
|