2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

视皮层中的视差计算

孔庆群 明雁声 胡占义

孔庆群, 明雁声, 胡占义. 视皮层中的视差计算. 自动化学报, 2011, 37(6): 645-657. doi: 10.3724/SP.J.1004.2011.00645
引用本文: 孔庆群, 明雁声, 胡占义. 视皮层中的视差计算. 自动化学报, 2011, 37(6): 645-657. doi: 10.3724/SP.J.1004.2011.00645
KONG Qing-Qun, MING Yan-Sheng, HU Zhan-Yi. Disparity Computation in the Visual Cortices. ACTA AUTOMATICA SINICA, 2011, 37(6): 645-657. doi: 10.3724/SP.J.1004.2011.00645
Citation: KONG Qing-Qun, MING Yan-Sheng, HU Zhan-Yi. Disparity Computation in the Visual Cortices. ACTA AUTOMATICA SINICA, 2011, 37(6): 645-657. doi: 10.3724/SP.J.1004.2011.00645

视皮层中的视差计算

doi: 10.3724/SP.J.1004.2011.00645

Disparity Computation in the Visual Cortices

  • 摘要: 对应问题是从图像恢复物体三维几何形状的核心问题,也是计算机视觉领域长久以来没有很好解决的问题.尽管文献中 有大量对应点匹配算法报道,但这些主体基于数学和工程的方法,在鲁棒性方面离人类视觉还有很大的差距.所以,建立基于生理机理的 立体感知模型,可望有效提高匹配的鲁棒性.然而,要建立这种基于生理机制的计算模型, 需要对生物立体感知的机理有所了解.基于此,本文对近年来 关于生物立体感知的进展和主要研究成果进行了总结,包括初级区域V1, V2, V3区,以及 背部通道的MT, MST, IPS和腹部通道的V4, IT区.除了对这些区域 关于神经生理的成果进行介绍外,我们还简单介绍了著名的视差能量模型及其推广模型.本文对研究计算机视觉的人员有一定的参考价值.
  • [1] Yu Lian-Qing. Stereo Matching with Cortical Disparity Detection Mechanisms [Ph.D. dissertation], Institute of Automation, Chinese Academy of Sciences, China, 2008(于连庆. 基于视皮层视差检测机制的立体视觉技术研究 [博士学位论文], 中国科学院自动化研究所, 中国, 2008)[2] Barlow H B, Blakemore C, Pettigrew J D. The neural mechanism of binocular depth discrimination. The Journal of Physiology, 1967, 193(2): 327-342[3] Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 1962, 160(1): 106-154[4] Hubel D H, Wiesel T N. Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 1968, 195(1): 215-243[5] Jones J P, Palmer L A. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 1987, 58(6): 1233-1258[6] Cumming B G, Parker A J. Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity. The Journal of Neuroscience, 1999, 19(13): 5602-5618[7] Cumming B G, Parker A J. Local disparity not perceived depth is signaled by binocular neurons in cortical area V1 of the macaque. The Journal of Neuroscience, 2000, 20(12): 4758-4767[8] Cumming B G, Parker A J. Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature, 1997, 389(6648): 280-283[9] Nienborg H, Bridge H, Parker A J, Cumming B G. Receptive field size in V1 neurons limits acuity for perceiving disparity modulation. The Journal of Neuroscience, 2004, 24(9): 2065-2076[10] Nienborg H, Bridge H, Parker A J, Cumming B G. Neuronal computation of disparity in V1 limits temporal resolution for detecting disparity modulation. The Journal of Neuroscience, 2004, 25(44): 10207-10219[11] Sanada T M, Ohzawa I. Encoding of three-dimensional surface slant in cat visual areas 17 and 18. Journal of Neurophysiology, 2006, 95(5): 2768-2786[12] Ohzawa I, DeAngelis G C, Freeman R D. Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science, 1990, 249(4972): 1037-1041[13] Haefner R M, Cumming B G. Adaptation to natural binocular disparities in primate V1 explained by a generalized energy model. Neuron, 2008, 57(1): 147-158 [14] Read J C, Cumming B G. Sensors for impossible stimuli may solve the stereo correspondence problem. Nature Neuroscience, 2007, 10(10): 1322-1328 [15] Fleet D J, Wagner H, Heeger D J. Neural encoding of binocular disparity: energy models, position shifts and phase shifts. Vision Research, 1996, 36(12): 1839-1857[16] Tanabe S, Cumming B G. Mechanisms underlying the transformation of disparity signals from V1 to V2 in the macaque. The Journal of Neuroscience, 2008, 28(44): 11304-11314[17] Thomas O M, Cumming B G, Parker A J. A specialization for relative disparity in V2. Nature Neuroscience, 2002, 5(5): 472-478 [18] Heydt V D R, Zhou H, Friedman H S. Representation of stereoscopic edges in monkey visual cortex. Vision Research, 2000, 40(15): 1955-1967[19] Qiu F T, Heydt V D R. Figure and ground in the visual cortex: V2 combines stereoscopic cues with gestalt rules. Neuron, 2005, 47(1): 155-166 [20] Bredfeldt C B, Read J C A, Cumming B G. A quantitative explanation of responses to disparity-defined edges in macaque V2. Journal of Neurophysiology, 2009, 101(2): 701-713[21] Nienborg H, Cumming B G. Macaque V2 neurons, but not V1 neurons, show choice-related activity. The Journal of Neuroscience, 2006, 26(37): 9567-9578[22] Britten K H, Newsome W T, Shadlen M N, Celebrini S, Movshon J A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Visual Neuroscience, 1996, 13(1): 87-100 [23] Nienborg H, Cumming B G. Psychophysically measured task strategy for disparity discrimination is reflected in V2 neurons. Nature Neuroscience, 2007, 10(12): 1608-1614. [24] Nienborg H, Cumming B G. Decision-related activity in sensory neurons reflects more than a neuron's causal effect. Nature, 2009, 459(7243): 89-92[25] Chen G, Lu H D, Roe A W. A map for horizontal disparity in monkey V2. Neuron, 2008, 58(3): 442-450 [26] Adams D L, Zeki S. Functional organization of macaque V3 for stereoscopic depth. Journal of Neurophysiology, 2001, 86(5): 2195-2203[27] Georgieva S, Peeters R, Kolster H, Todd J T, Orban G A. The processing of three-dimensional shape from disparity in the human brain. The Journal of Neuroscience, 2009, 29(3): 727-742 [28] Born R T, Bradley D C, Structure and function of visual area MT. Annual Review of Neuroscience, 2005, 28(1): 157-189[29] DeAngelis G C, Uka T. Coding of horizontal disparity and velocity by MT neurons in the alert macaque. Journal of Neurophysiology, 2003, 89(2): 1094-1111[30] DeAngelis G C, Newsome W T. Organization of disparity-selective neurons in macaque area MT. The Journal of Neuroscience, 1999, 19(4): 1398-1415[31] Albright T D, Desimone R, Gross C G. Columnar organization of directionally selective cells in visual area MT of the macaque. Journal of Neurophysiology, 1984, 51(1): 16-31[32] Nguyenkim J D, DeAngelis G C. Disparity-based coding of three-dimensional surface orientation by macaque middle temporal neurons. The Journal of Neuroscience, 2003, 23(18): 7117-7128[33] Uka T, DeAngelis G C. MT neurons do not signal relative disparity. Journal of Vision, 2002, 2(7): 37[34] Neri P, Bridge H, Heeger D J. Stereoscopic processing of absolute and relative disparity in human visual cortex. Journal of Neurophysiology, 2004, 92(3): 1880-1891[35] Uka T, DeAngelis G C. Contribution of middle temporal area to coarse depth discrimination: comparison of neuronal and psychophysical sensitivity. The Journal of Neuroscience, 2003, 23(8): 3515-3530[36] Uka T, DeAngelis G C. Linking neural representation to function in stereoscopic depth perception: roles of the middle temporal area in coarse versus fine disparity discrimination. The Journal of Neuroscience, 2006, 26(25): 6791-6802[37] DeAngelis G C, Cumming B G, Newsome W T. Cortical area MT and the perception of stereoscopic depth. Nature, 1998, 394(6694): 677-679[38] Dodd J V, Krug K, Cumming B G, Parker A J. Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. The Journal of Neuroscience, 2001, 21(13): 4809-4821[39] Krug K, Cumming B C, Parker A J. Comparing perceptual signals of single V5/MT neurons in two binocular depth tasks. Journal of Neurophysiology, 2004, 92(3): 1586-1596[40] Roy J P, Komatsu H, Wurtz R H. Disparity sensitivity of neurons in monkey extrastriate area MST. The Journal of Neuroscience, 1992, 12(7): 2478-2492[41] Takemura A, Inoue Y, Kawano K, Quaia C, Miles F A. Single-unit activity in cortical area MST associated with disparity-vergence eye movements: evidence for population coding. Journal of Neurophysiology, 2001, 85(5): 2245-2266[42] Masson G S, Busettini C, Miles F A. Vergence eye movements in response to binocular disparity without depth perception. Nature, 1997, 389(6648): 283-286[43] Ilg U J, Schumann S. Primate area MST-l is involved in the generation of goal-directed eye and hand movements. Journal of Neurophysiology, 2007, 97(1): 761-771 [44] Durand J B, Nelissen K, Joly O, Wardak C, Todd J T, Norman J F, Janssen P, Vanduffel W, Orban G A. Anterior regions of monkey parietal cortex process visual 3D shape. Neuron, 2007, 55(3): 493-505 [45] Durand J B, Peeters R, Norman J F, Todd J T, Orban G A. Parietal regions processing visual 3D shape extracted from disparity. Neuroimage, 2009, 46(4): 1114-1126[46] Srivastava S, Orban G A, De Maziere P A, Janssen P. A distinct representation of three-dimensional shape in macaque anterior intraparietal area: fast, metric, and coarse. The Journal of Neuroscience, 2009, 29(34): 10613-10626[47] Janssen P, Vogels R, Orban G A. Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. Science, 2000, 288(5473): 2054-2056[48] Janssen P, Vogels R, Orban G A. Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(14): 8217-8222\r\n[49] Taira M, Tsutsui K I, Jiang M, Yara K, Sakata H. Parietal neurons represent surface orientation from the gradient of binocular disparity. Journal of Neurophysiology, 2000, 83(5): 3140-3146 [50] Hinkle D A, Connor C E. Quantitative characterization of disparity tuning in ventral pathway area V4. Journal of Neurophysiology, 2005, 94(4): 2726-2737[51] Hinkle D A, Connor C E. Three-dimensional orientation tuning in macaque area V4. Nature Neuroscience, 2002, 5(7): 665-670[52] Hegde J, Van Essen D C. Role of primate visual area V4 in the processing of 3-D shape characteristics defined by disparity. Journal of Neurophysiology, 2005, 94(4): 2856-2866[53] Umeda K, Tanabe S, Fujita I. Representation of stereoscopic depth based on relative disparity in macaque area V4. Journal of Neurophysiology, 2007, 98(1): 241-252 [54] Tanabe S, Umeda K, Fujita I. Rejection of false matches for binocular correspondence in macaque visual cortical area V4. The Journal of Neuroscience, 2004, 24(37): 8170-8180[55] Kumano H, Tanabe S, Fujita I. Spatial frequency integration for binocular correspondence in macaque area V4. Journal of Neurophysiology, 2008, 99(1): 402-408[56] Janssen P, Vogels R, Orban G A. Three-dimensional shape coding in inferior temporal cortex. Neuron, 2000, 27(2): 385-397[57] Janssen P, Vogels R, Liu Y, Orban G A. Macaque inferior temporal neurons are selective for three-dimensional boundaries and surfaces. The Journal of Neuroscience, 2001, 21(23): 9419-9429[58] Janssen P, Vogels R, Liu Y, Orban G A. At least at the level of inferior temporal cortex, the stereo correspondence problem is solved. Neuron, 2003, 37(4): 693-701 [59] Yamane Y, Carlson E T, Bowman K C, Wang Z H, Connor C E. A neural code for three-dimensional object shape in macaque inferotemporal cortex. Nature Neuroscience, 2008, 11(11): 1352-1360 [60] Grossberg S, Howe P D. A laminar cortical model of stereopsis and three-dimensional surface perception. Vision Research, 2003, 43(7): 801-829
  • 加载中
计量
  • 文章访问数:  2068
  • HTML全文浏览量:  60
  • PDF下载量:  960
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-03
  • 修回日期:  2011-02-25
  • 刊出日期:  2011-06-20

目录

    /

    返回文章
    返回