2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时变滞后Lurie型系统的改进稳定性准则

RAMAKRISHNAN Krishnan RAY Goshaidas

RAMAKRISHNAN Krishnan, RAY Goshaidas. 时变滞后Lurie型系统的改进稳定性准则. 自动化学报, 2011, 37(5): 639-644. doi: 10.3724/SP.J.1004.2011.00639
引用本文: RAMAKRISHNAN Krishnan, RAY Goshaidas. 时变滞后Lurie型系统的改进稳定性准则. 自动化学报, 2011, 37(5): 639-644. doi: 10.3724/SP.J.1004.2011.00639
RAMAKRISHNAN Krishnan, RAY Goshaidas. Improved Stability Criteria for Lurie Type Systems with Time-varying Delay. ACTA AUTOMATICA SINICA, 2011, 37(5): 639-644. doi: 10.3724/SP.J.1004.2011.00639
Citation: RAMAKRISHNAN Krishnan, RAY Goshaidas. Improved Stability Criteria for Lurie Type Systems with Time-varying Delay. ACTA AUTOMATICA SINICA, 2011, 37(5): 639-644. doi: 10.3724/SP.J.1004.2011.00639

时变滞后Lurie型系统的改进稳定性准则

doi: 10.3724/SP.J.1004.2011.00639
详细信息
    通讯作者:

    RAMAKRISHNAN Krishnan

Improved Stability Criteria for Lurie Type Systems with Time-varying Delay

More Information
    Corresponding author: RAMAKRISHNAN Krishnan
  • 摘要: In this technical note, we present a new stability analysis procedure for ascertaining the delay-dependent stability of a class of Lurie systems with time-varying delay and sector-bounded nonlinearity using Lyapunov-Krasovskii (LK) functional approach. The proposed analysis, owing to the candidate LK functional and tighter bounding of its time-derivative, yields less conservative absolute and robust stability criteria for nominal and uncertain systems respectively. The effectiveness of the proposed criteria over some of the recently reported results is demonstrated using a numerical example.
  • [1] Popov V M. Hyperstability of Control Systems.New York: Springer, 1973[2] Khalil H K. Nonlinear Systems.Upper Saddle River: Prentice-Hall, 1996[3] Liao X X. Absolute Stability of Nonlinear Control Systems. Beijing: Science Press, 1993[4] Wang J Z, Duan Z S, Yang Y, Huang L. Analysis and Control of Nonlinear Systems with Stationary Sets: Time-Domain and Frequency-Domain Methods. Singapore: World Scientific Publishing Company, 2009[5] Yalcin M E, Suykens J A K, Vandewalle J. Master--slave synchronization of Lur'e systems with time-delay. International Journal of Bifurcation and Chaos, 2001, 11(6): 1707-1722 [6] Liao X X, Chen G R. Chaos synchronization of general Lur'e systems via time-delay feedback control. International Journal of Bifurcation and Chaos, 2003, 13(1): 207-213 [7] Cao J, Li H X, Ho D W C. Synchronization criteria of Lur'e systems with time-delay feedback control. Chaos, Solitons and Fractals, 2005, 23(4): 1285-1298[8] He Y, Wu M. Absolute stability for multiple delay general Lur'e control systems with multiple nonlinearities. Journal of Computational and Applied Mathematics, 2003, 159(2): 241-248 [9] Wu M, Feng Z H, He Y. Improved delay-dependent absolute stability of Lur'e systems with time-delay. International Journal of Control, Automation and Systems, 2009, 7(6):1009-1014 [10] He Y, Wu M, She J H, Liu G P. Robust stability for delay Lur'e control systems with multiple nonlinearities. Journal of Computational and Applied Mathematics, 2005,176(2): 371-380 [11] Han Q L, Yue D. Absolute stability of Lur'e systems with time-varying delay. IET Control Theory and Applications,2007, 1(3): 854-859 [12] Wu M, Feng Z Y, He Y, She J H. Improved delay-dependent absolute stability and robust stability for a class of nonlinear systems with time-varying delay. International Journal of Robust and Nonlinear Control, 2010, 20(6): 694-702[13] Gao Jin-Feng, Pan Hai-Peng, Ji Xiao-Fu. A new delay-dependent absolute stability criterion for Lurie systems with time-varying delay. Acta Automatica Sinica, 2010, 36(6): 845-850 [14] Gahinet P, Nemirovskii A, Laub A J, Chilali M. LMI control toolbox for use with MATLAB. U. S.: Mathworks Inc, 1995[15] Han Q L. Absolute stablity of time-delayed systems with sector-bounded nonlinearity. Automatica, 2005, 41(12): 2171-2176 [16] Yue D, Tian E G, Zhang Y J. A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay. International Journal of Robust Nonlinear Control,2009, 19(13): 1493-1518 [17] Wu M, He Y, She J H, Liu G P. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica, 2004,40(8): 1435-1439 [18] Gu K, Kharitonov V L, Chen J. Stability of Time-delay Systems. Boston: Birkhauseruser,2003[19] Boyd S, Ghaoui L E, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994[20] Kwon O M, Park J H, Lee S M. An improved delay-dependent criterion for asymptotic stability of uncertain dynamic systems with time-varying delays. Journal of Optimization Theory and Applications, 2010, 145(2): 343-353b
  • 加载中
计量
  • 文章访问数:  1930
  • HTML全文浏览量:  31
  • PDF下载量:  1459
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-19
  • 修回日期:  2010-12-27
  • 刊出日期:  2011-05-20

目录

    /

    返回文章
    返回