2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于能量人工神经元模型的自生长、自组织神经网络

班晓娟 刘浩 徐卓然

班晓娟, 刘浩, 徐卓然. 一种基于能量人工神经元模型的自生长、自组织神经网络. 自动化学报, 2011, 37(5): 615-622. doi: 10.3724/SP.J.1004.2011.00615
引用本文: 班晓娟, 刘浩, 徐卓然. 一种基于能量人工神经元模型的自生长、自组织神经网络. 自动化学报, 2011, 37(5): 615-622. doi: 10.3724/SP.J.1004.2011.00615
BAN Xiao-Juan, LIU Hao, XU Zhuo-Ran. An Energy Artificial Neuron Model Based Self-growing and Self-organizing Neural Network. ACTA AUTOMATICA SINICA, 2011, 37(5): 615-622. doi: 10.3724/SP.J.1004.2011.00615
Citation: BAN Xiao-Juan, LIU Hao, XU Zhuo-Ran. An Energy Artificial Neuron Model Based Self-growing and Self-organizing Neural Network. ACTA AUTOMATICA SINICA, 2011, 37(5): 615-622. doi: 10.3724/SP.J.1004.2011.00615

一种基于能量人工神经元模型的自生长、自组织神经网络

doi: 10.3724/SP.J.1004.2011.00615
详细信息
    通讯作者:

    刘浩

An Energy Artificial Neuron Model Based Self-growing and Self-organizing Neural Network

More Information
    Corresponding author: LIU Hao
  • 摘要: 本文结合近年生物学中神经科学的发展, 针对神经胶质细胞对生物神经元网络的生长提供能量支持的特性, 将神经胶质细胞的能量模型引入到人工神经元的概念模型中, 提出了能量人工神经元(Energy artificial neuron, EAN)的概念模型,并给出了数学表述. 同时,在能量人工神经元模型的基础上, 实现了一种新型自生长、自组织人工神经元网络 (EAN based self-growing and self-organizing neural network, ESGSONN), ESGSONN将神经元中的能量、网络的熵增量及样本与神经元权值的相似度的竞争作为生长的条件, 并对最优生长点中的获胜神经元进行单位步长调整. ESGSONN实现了快速生长、精确的样本数据分布密度保持、死神经元少的特性. 本文使用经典的16种动物实验(Ritter and Kohonen, 1989)验证了ESGSONN的正确性,并通过同SOFM、GCS等自组织网络的对比实验验证ESGSONN网络的特性. 最后,本文对ESGSONN在高维空间中的本质进行了讨论.
  • [1] Willshaw D J, Von D M C. How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society of London, Series B, Biological Sciences, 1976, 194(1117): 431-445 [2] Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, 43(1): 59-69 [3] Kangas J A, Kohnen T K, Laaksonen J T. Variants of self-organizing maps. IEEE Transactions on Neural Networks, 1990, 1(1): 93-99 [4] Fritzke B. Growing cell structures --- a self-organizing network for unsupervised and supervised learning. Neural Networks, 1994, 7(9): 1441-1460 [5] Fritzke B. Growing grid --- a self-organizing network with constant neighborhood range and adaption strength. Neural Processing Letters, 1995, 2(5): 9-13 [6] Fritzke B. A growing neural gas network learns topologies. Advances in Neural Information Processing System. Cambridge: The MIT Press, 1995. 625-632[7] Choi D I, Park S H. Self-creating and organizing neural networks. IEEE Transactions on Neural Networks, 1994, 5(4): 561-575 [8] Martinetz T M, Schultan K J. A ``neural-gas'' network learns topologies. Artificial Neural Networks, 1991, 1: 397-402[9] Blackmore J, Miikkulainen R. Incremental grid growing: encoding high-dimensional structure into a two-dimensional feature map. In: Proceedings of the IEEE International Conference on Neural Networks. San Francisco, USA: IEEE, 1993. 450-455[10] Chow T W S, Wu S. Cell-splitting grid: a self-creating and self-organizing neural network. Neurocomputing, 2004, 57: 373-387 [11] Alahakoon D, Halgamuge S K, Srinivasan B. Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Transactions on Neural Networks, 2000, 11(3): 601-614 [12] Shen F. An Algorithm for Incremental Unsupervised Learning and Topology Representation [Ph.D. dissertation], Tokyo Institute of Technology, Japan, 2006[13] Shen F, Hasegawa O. An incremental network for on-line unsupervised classification and topology learning. Neural Networks, 2006, 19(1): 90-106 [14] Shen F, Hasegawa O. An adaptive incremental LBG for vector quantization. Neural Networks, 2006, 19(5): 694-704 [15] Shen F, Oqura T, Hasegawa O. An enhanced self-organizing incremental neural network for online unsupervised learning. Neural Networks, 2007, 20(8): 893-903 [17] Pfrieger F W, Barres B A. Synaptic efficacy enhanced by glial cells in vitro. Science, 1997, 277(5332): 1684-1687 [18] Ullian E M, Sapperstein S K, Christopherson K S, Barres B A. Control of synapse number by glia. Science, 2001, 291(5504): 657-661 [19] Song H, Stevens C F, Gage F H. Astroglia induce neurogenesis from adult neural stem cells. Nature, 2002, 417(6884): 39-44 [20] Slezak M, Pfrieger F W, Soltys Z. Synaptic plasticity, astrocytes and morphological homeostasis. Journal of Physiology-Paris, 2006, 99(2-3): 84-91[16] Deitmer J W. Strategies for metabolic exchange between glial cells and neurons. Respiration Physiology, 2001, 129(1-2): 71-81 [21] Deitmer J W. Glial strategy for metabolic shuttling and neuronal function. BioEssays, 2000, 22(8): 747-752 3.0.CO;2-0" target=_blank>[22] Newman E A. Glial cell inhibition of neurons by release of ATP. The Journal of Neuroscience, 2003, 23(5): 1659-1666[23] Deitmer J W, Brockhaus J, Casel D. Modulation of synaptic activity in Purkinje neurons by ATP. The Cerebellum, 2006, 5(1): 49-54 [24] Bezzi P, Volterra A. A neuron-glia signaling network in the active brain. Current Opinion in Neurobiology, 2001, 11(3): 387-394 [25] McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 1943, 5(4): 115-133[26] Ritter H, Kohonen T. Self-organizing semantic maps. Biological Cybernetics, 1989, 61(4): 241-254
  • 加载中
计量
  • 文章访问数:  2511
  • HTML全文浏览量:  62
  • PDF下载量:  1824
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-03
  • 修回日期:  2010-12-27
  • 刊出日期:  2011-05-20

目录

    /

    返回文章
    返回