2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于车型聚类的交通流参数视频检测

吴聪 李勃 董蓉 陈启美

吴聪, 李勃, 董蓉, 陈启美. 基于车型聚类的交通流参数视频检测. 自动化学报, 2011, 37(5): 569-576. doi: 10.3724/SP.J.1004.2011.00569
引用本文: 吴聪, 李勃, 董蓉, 陈启美. 基于车型聚类的交通流参数视频检测. 自动化学报, 2011, 37(5): 569-576. doi: 10.3724/SP.J.1004.2011.00569
WU Cong, LI Bo, DONG Rong, CHEN Qi-Mei. Detecting Traffic Parameters Based on Vehicle Clustering from Video. ACTA AUTOMATICA SINICA, 2011, 37(5): 569-576. doi: 10.3724/SP.J.1004.2011.00569
Citation: WU Cong, LI Bo, DONG Rong, CHEN Qi-Mei. Detecting Traffic Parameters Based on Vehicle Clustering from Video. ACTA AUTOMATICA SINICA, 2011, 37(5): 569-576. doi: 10.3724/SP.J.1004.2011.00569

基于车型聚类的交通流参数视频检测

doi: 10.3724/SP.J.1004.2011.00569
详细信息
    通讯作者:

    李勃

Detecting Traffic Parameters Based on Vehicle Clustering from Video

  • 摘要: 单目摄像机成像丢失深度信息,且PTZ (Pan/Tilt/Zoom)摄像视频场景多变,导致交通流参数提取误差较大. 提出了一种基于车型聚类的交通流参数检测方法. 在改进的摄像机自标定成像模型中,提取PTZ 参数变化下的透视投影不变量"伪形状特征'', 对其进行基于贡献率算法的车型聚类分析,以车型均高代替实际高度,获取车辆的长宽, 进而计算道路空间占有率,并提升车速检测精度. 测试表明实时性较高,车型聚类自适应于不同场景,平均准确度为96.9%,车长计算精度优于90%.
  • [1] Gupte S, Masoud O, Martin R F K, Papanikolopoulos N P. Detection and classification of vehicles. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1): 37-47 [2] Rad R, Jamzad M. Real time classification and tracking of multiple vehicles in highways. Pattern Recognition Letters, 2005, 26(10): 1597-1607[3] Kim Z W, Malik J. Fast vehicle detection with probabilistic feature grouping and its application to vehicle tracking. In: Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003. 524-531[4] Sidla O, Paletta L, Lypetskyy Y, Janner C. Vehicle recognition for highway lane survey. In: Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems. Washington D.C., USA: IEEE, 2004. 531-536[5] Meng Xiao-Qiao, Hu Zhan-Yi. Recent progress in camera self-calibration. Acta Automatica Sinica, 2003, 29(1): 110-124 (孟晓桥, 胡占义. 摄像机自标定方法的研究与进展. 自动化学报, 2003, 29(1): 110-124)[6] Li Bo, Dong Rong, Chen Qi-Mei. Automatic calibration method for PTZ camera. Journal of Beijing University of Posts and Telecommunications, 2009, 32(z1): 24-29 (李勃, 董蓉, 陈启美. 路况PTZ摄像机自动标定方法. 北京邮电大学学报, 2009, 32(z1): 24-29)[7] Ma Shuai, Tang Shi-Wei, Yang Dong-Qing, Wang Teng-Jiao. An incremental clustering algorithm for the topology adjustment of location databases. Journal of Software, 2004, 15(9): 1351-1360 (马帅, 唐世渭, 杨冬青, 王腾蛟. 一种用于位置数据库结构调整的增量聚类算法. 软件学报, 2004, 15(9): 1351-1360)[8] Liu Ming, Wang Xiao-Long, Liu Yuan-Chao. A fast clustering algorithm for large-scale and high dimensional data. Acta Automatica Sinica, 2009, 35(7): 859-866 (刘铭, 王晓龙, 刘远超. 一种大规模高维数据快速聚类算法. 自动化学报, 2009, 35(7): 859-866) [9] Liu Kai-Di, Liu Xin, Zhao Qi, Zhou Shao-Ling. An unsupervised learning algorithm based on classification weight and mass center driving. Acta Automatica Sinica, 2009, 35(5): 526-531 (刘开第, 刘昕, 赵奇, 周少玲. 基于分类权与质心驱动的无监督学习算法. 自动化学报, 2009, 35(5): 526-531)[10] Ester M, Kriegel H P, Sander J, Xu X W. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, USA: AAAI, 1996. 226-231[11] Karypis G, Han E H, Kumar V. Chameleon: hierarchical clustering using dynamic modeling. Computer, 1999, 32(8): 68-75 [12] Ertoz L, Steinbach M, Kumar V. Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Proceedings of the 3rd SIAM International Conference on Data Mining. San Francisco, USA: SIAM, 2003. 47-58[13] Zhou Xue, Hu Wei-Ming. Object contour tracking with fusion of color and incremental shape priors. Acta Automatica Sinica, 2009, 35(11): 1394-1402 (周雪, 胡卫明. 融合颜色和增量形状先验的目标轮廓跟踪. 自动化学报, 2009, 35(11): 1394-1402) [14] Jiao Bo, Li Guo-Hui, Wang Yan-Ming, Tian Hao. A method of shadow elimination for moving vehicle based on morphology. Acta Automatica Sinica, 2008, 34(7): 838-840 (焦波, 李国辉, 汪彦明, 田昊. 一种基于形态学的运动车辆阴影消除方法. 自动化学报, 2008, 34(7): 838-840)[15] Zhao Y, Karypis G. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 2004, 55(3): 311-331
  • 加载中
计量
  • 文章访问数:  2778
  • HTML全文浏览量:  54
  • PDF下载量:  1229
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-31
  • 修回日期:  2011-01-12
  • 刊出日期:  2011-05-20

目录

    /

    返回文章
    返回