2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不确定性度量的多特征融合跟踪

顾鑫 王海涛 汪凌峰 王颖 陈如冰 潘春洪

顾鑫, 王海涛, 汪凌峰, 王颖, 陈如冰, 潘春洪. 基于不确定性度量的多特征融合跟踪. 自动化学报, 2011, 37(5): 550-559. doi: 10.3724/SP.J.1004.2011.00550
引用本文: 顾鑫, 王海涛, 汪凌峰, 王颖, 陈如冰, 潘春洪. 基于不确定性度量的多特征融合跟踪. 自动化学报, 2011, 37(5): 550-559. doi: 10.3724/SP.J.1004.2011.00550
GU Xin, WANG Hai-Tao, WANG Ling-Feng, WANG Ying, CHEN Ru-Bing, PAN Chun-Hong. Fusing Multiple Features for Object Tracking Based on Uncertainty Measurement. ACTA AUTOMATICA SINICA, 2011, 37(5): 550-559. doi: 10.3724/SP.J.1004.2011.00550
Citation: GU Xin, WANG Hai-Tao, WANG Ling-Feng, WANG Ying, CHEN Ru-Bing, PAN Chun-Hong. Fusing Multiple Features for Object Tracking Based on Uncertainty Measurement. ACTA AUTOMATICA SINICA, 2011, 37(5): 550-559. doi: 10.3724/SP.J.1004.2011.00550

基于不确定性度量的多特征融合跟踪

doi: 10.3724/SP.J.1004.2011.00550
详细信息
    通讯作者:

    顾鑫

Fusing Multiple Features for Object Tracking Based on Uncertainty Measurement

More Information
    Corresponding author: GU Xin
  • 摘要: 提出了一种新的基于特征不确定性度量的多特征融合跟踪算法. 首先, 针对粒子滤波跟踪算法中特征鉴别能力较弱且粒子分布相对分散时容易造成目标丢失的事实, 本文定义了一种新的特征不确定度量方法, 该度量可以在线调整不同类型特征对跟踪结果的贡献. 同时, 针对乘性和加性特征融合跟踪算法方法中存在的缺陷, 提出了一种自适应的多特征融合方法, 融合的结果既突出了状态后验分布中目标真实状态对应的峰值, 又对噪声不敏感, 从而提高了目标跟踪的鲁棒性. 各种场景下的实验结果比较表明: 新的融合跟踪算法比单特征跟踪、 乘性融合跟踪和加性融合跟踪有着更好的稳定性和鲁棒性.
  • [1] Hou Zhi-Qiang, Han Chong-Zhao. A survey of visual tracking. Acta Automatica Sinica, 2006, 32(4): 603-617(侯志强, 韩崇昭. 视觉跟踪技术综述. 自动化学报, 2006, 32(4): 603-617)[2] Perez P, Hue C, Vermaak J, Gangnet M. Color-based probabilistic tracking. In: Proceedings of the 7th European Conference on Computer Vision. London, UK: Springer, 2002. 661-675[3] Kim B G, Park D J. Unsupervised video object segmentation and tracking based on new edge features. Pattern Recognition Letters, 2004, 25(15): 1731-1742 [4] Baker S, Matthews I. Lucas-Kanade 20 years on: a unifying framework. International Journal of Computer Vision, 2004, 56(3): 221-255 [5] Bastos R, Dias J M S. Fully automated texture tracking based on natural features extraction and template matching. In: Proceedings of the ACM SIGCHI International Conference on Advances in Computer Entertainment Technology. New York, USA: ACM, 2005. 180-183[6] Du W, Piater J. A probabilistic approach to integrating multiple cues in visual tracking. In: Proceedings of the 10th Europe on Conference on Computer Vision. Berlin, Germany: Springer, 2008. 225-238[7] Lin Hai-Feng, Ma Yu-Feng, Song Tao. Research on object tracking algorithm based on SIFT. Acta Automatica Sinica, 2010, 36(8): 1204-1208(蔺海峰, 马宇峰, 宋涛. 基于SIFT特征目标跟踪算法研究. 自动化学报, 2010, 36(8): 1204-1208) [8] Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 13-58 [9] Wang Yong-Zhong, Liang Yan, Zhao Chun-Hui, Pan Quan. Kernel-based tracking based on adaptive fusion of multiple cues. Acta Automatica Sinica, 2008, 34(4): 393-399(王永忠, 梁彦, 赵春晖, 潘泉. 基于多特征自适应融合的核跟踪方法. 自动化学报, 2008, 34(4): 393-399)[10] Birchfield S. Elliptical head tracking using intensity gradients and color histograms. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Santa Barbara, USA: IEEE, 1998. 232-237[11] Li P H, Chaumette F. Image cues fusion for object tracking based on particle filter. In: Proceedings of the 3rd International Workshop on Articulated Motion and Deformable Objects. Palma de Mallorca, Spain: Springer, 2004. 99-107[12] Wang X, Tang Z M. Modified particle filter-based infrared pedestrian tracking. Infrared Physics and Technology, 2010, 53(4): 280-287 [13] Zhong Xiao-Pin, Xue Jian-Ru, Zheng Nan-Ning, Ping Lin-Jiang. An adaptive fusion strategy based multiple-cue tracking. Journal of Electronics and Information Technology, 2007, 29(5): 1017-1021(钟小品, 薛建儒, 郑南宁, 平林江. 基于融合策略自适应的多线索跟踪方法. 电子与信息学报, 2007, 29(5): 1017-1021)[14] Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188 [15] Isard M, Blake A. Condensation--conditional density propagation for visual tracking. International Journal of Computer Vision, 1998, 29(1): 5-28 [16] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 886-893[17] Perez P, Vermaak J, Blake A. Data fusion for visual tracking with particles. Proceedings of the IEEE, 2004, 92(3): 495-513
  • 加载中
计量
  • 文章访问数:  2825
  • HTML全文浏览量:  44
  • PDF下载量:  1539
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-09
  • 修回日期:  2010-12-27
  • 刊出日期:  2011-05-20

目录

    /

    返回文章
    返回