2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有适应性突变和惯性权重的粒子群优化(PSO)算法及其在动态系统参数估计中的应用

ALFI Alireza

ALFI Alireza. 具有适应性突变和惯性权重的粒子群优化(PSO)算法及其在动态系统参数估计中的应用. 自动化学报, 2011, 37(5): 541-549. doi: 10.3724/SP.J.1004.2011.00541
引用本文: ALFI Alireza. 具有适应性突变和惯性权重的粒子群优化(PSO)算法及其在动态系统参数估计中的应用. 自动化学报, 2011, 37(5): 541-549. doi: 10.3724/SP.J.1004.2011.00541
ALFI Alireza. PSO with Adaptive Mutation and Inertia Weight and Its Application in Parameter Estimation of Dynamic Systems. ACTA AUTOMATICA SINICA, 2011, 37(5): 541-549. doi: 10.3724/SP.J.1004.2011.00541
Citation: ALFI Alireza. PSO with Adaptive Mutation and Inertia Weight and Its Application in Parameter Estimation of Dynamic Systems. ACTA AUTOMATICA SINICA, 2011, 37(5): 541-549. doi: 10.3724/SP.J.1004.2011.00541

具有适应性突变和惯性权重的粒子群优化(PSO)算法及其在动态系统参数估计中的应用

doi: 10.3724/SP.J.1004.2011.00541

PSO with Adaptive Mutation and Inertia Weight and Its Application in Parameter Estimation of Dynamic Systems

  • 摘要: An important problem in engineering is the unknown parameters estimation in nonlinear systems. In this paper, a novel adaptive particle swarm optimization (APSO) method is proposed to solve this problem. This work considers two new aspects, namely an adaptive mutation mechanism and a dynamic inertia weight into the conventional particle swarm optimization (PSO) method. These mechanisms are employed to enhance global search ability and to increase accuracy. First, three well-known benchmark functions namely Griewank, Rosenbrock and Rastrigrin are utilized to test the ability of a search algorithm for identifying the global optimum. The performance of the proposed APSO is compared with advanced algorithms such as a nonlinearly decreasing weight PSO (NDWPSO) and a real-coded genetic algorithm (GA), in terms of parameter accuracy and convergence speed. It is confirmed that the proposed APSO is more successful than other aforementioned algorithms. Finally, the feasibility of this algorithm is demonstrated through estimating the parameters of two kinds of highly nonlinear systems as the case studies.
  • [1] Astrom K J, Wittenmark B. Adaptive Control. Massachusetts Addison-Wesley: 1995 [2] Chang W D. Nonlinear system identification and control using a real-coded genetic algorithm. Applied Mathematical Modeling, 2007, 31(3): 541-550 [3] Dai Dong, Ma Xi-Kui, Li Fu-Cai, You Yong. An approach of parameter estimation for a chaotic system based on genetic algorithm. Acta Physica Sinica, 2002, 51(11): 2459-2462[4] Kmürcü M I, Tutkun N, zler I H. Akpinar A. Estimation of the beach bar parameters using the genetic algorithms. Applied Mathematics and Computation, 2008, 195(1): 49-60 [5] Billings S A, Mao K Z. Structure for detection for nonlinear rational models using genetic algorithms. International Journal of Systems Science, 1998, 29(3): 223-231 [6] Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks. Perth, Australia: IEEE, 1995. 1942-1948[7] Bergh F V, Engelbrecht A P. A study of particle swarm optimization particle trajectories. Information Sciences, 2006, 176(8): 937-971 [8] Kennedy J, Eberhart R C. The particle swarm: social adaptation in informal-processing systems. New Ideas in Optimization. Maidenhead: McGraw-Hill, UK, 1999. 379-387[9] Eberhart R C, Shi Y H. Particle swarm optimization: developments, applications and resources. In: Proceedings of the Congress on Evolutionary Computation. Seoul, South Korea: IEEE, 2001. 81-86[10] He Q, Wang L, Liu, B. Parameter estimation for chaotic systems by particle swarm optimization. Chaos, Solitons and Fractals, 2007, 34(2): 654-661 [11] Ye M Y. Parameter identification of dynamical systems based on improved particle swarm optimization. Lecture Nates in Control and Information Sciences, Springer-Verlag Berlin Heidelberg, 2006. 351-360 [12] Tang Y G, Guan X P. Parameter estimation for time-delay chaotic system by particle swarm optimization, Chaos, Solitons and Fractals, 2009, 40(3): 1391-1398[13] Lin C J, Lee C Y. Non-linear system control using a recurrent fuzzy neural network based on improved particle swarm optimisation, International Journal of Systems Science, 2010, 41(4): 381-395[14] Gaing Z L. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Transactions on Energy Conversion, 2004, 19(2): 384-391 [15] Andrews P S. An investigation into mutation operators for particle swarm optimization. In: {Proceedings of the IEEE Congress on Evolutionary Computation}. Vancouver, Canade: IEEE, 2006. 1044-1051[16] Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization, Computers and Operations Research, 2006, 33(3): 859-871[17] Higasshi N, Iba H. Particle swarm optimization with Gaussian mutation, In: Proceedings Swarm Intelligence Symposium. Washington D.C., USA: IEEE, 2003. 72-79[18] Jiao B, Lian Z G, Gu X S. A dynamic inertia weight particle swarm optimization algorithm. Chaos, Solitons and Fractals, 2008, 37(3): 698-705 [19] Stacey A, Jancic M, Grundy I. Particle swarm optimization with mutation, In: Proceedings of the IEEE Congress on Evolutionary Computation, Washington D.C., USA: IEEE, 2003. 1425-1430[20] Shi Y H, Eberhart R C. Parameter selection in particle swarm optimization. In: Proceedings of the 7th International Conference on Evolutionary Programming. London, UK: Springer-Verlag, 1998. 591-600[21] Yang X M, Yuan J S, Yuan J Y, Mao H N. A modified particle swarm optimizer with dynamic adaptation. Applied Mathematics and Computation, 2007, 189(2): 1205-1213 [22] Chen J Y, Qin Z, Liu Y, Lu J. {Particle Swarm Optimization with Local Search}. In: Proceedings of the IEEE International Conference Neural Networks and Brains. Beijing, China: IEEE, 2005. 481-484[23] Modares H, Alfi A, Fateh M M. Parameter identification of chaotic dynamic systems through an improved particle swarm optimization. Expert Systems with Applications, 2010, 37(5): 3714-3720 [24] Alfi A, Modares H. System identification and control using adaptive particle swarm optimization. Applied Mathematical Modelling, 2011, 35(3): 1210-1221 [25] Modares H, Alfi A, Sistani M B N. Parameter estimation of bilinear systems based on an adaptive particle swarm optimization. Engineering Applications of Artificial Intelligence, 2010, 23(7): 1105-1111 [26] Alatas B, Akin E, Ozer A B. Chaos embedded particle swarm optimization algorithms. Chaos, Solitons and Fractals, 2009, 40(4): 1715-1734 [27] Griewank A O. Generalized descent of global optimization. Journal of Optimization Theory and Applications, 1981, 34(1): 11-39 [28] Grefenstette J J. Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics, 1986, 16(1): 122-128 [29] Schaffer J D, Caruana R. A Eshelman L J, Das R A. Study of control parameters affecting online performance of genetic algorithms for function optimization, In: Proceedings of the 3rd International Conference on Genetic Algorithms. San Francisco, USA: Morgan Kaufmann Publishers, 1989. 51-60
  • 加载中
计量
  • 文章访问数:  3111
  • HTML全文浏览量:  45
  • PDF下载量:  2776
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-18
  • 修回日期:  2011-01-22
  • 刊出日期:  2011-05-20

目录

    /

    返回文章
    返回