2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

布尔网络的分析与控制——矩阵半张量积方法

程代展 齐洪胜 赵寅

程代展, 齐洪胜, 赵寅. 布尔网络的分析与控制——矩阵半张量积方法. 自动化学报, 2011, 37(5): 529-540. doi: 10.3724/SP.J.1004.2011.00529
引用本文: 程代展, 齐洪胜, 赵寅. 布尔网络的分析与控制——矩阵半张量积方法. 自动化学报, 2011, 37(5): 529-540. doi: 10.3724/SP.J.1004.2011.00529
CHENG Dai-Zhan, QI Hong-Sheng, ZHAO Yin. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach. ACTA AUTOMATICA SINICA, 2011, 37(5): 529-540. doi: 10.3724/SP.J.1004.2011.00529
Citation: CHENG Dai-Zhan, QI Hong-Sheng, ZHAO Yin. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach. ACTA AUTOMATICA SINICA, 2011, 37(5): 529-540. doi: 10.3724/SP.J.1004.2011.00529

布尔网络的分析与控制——矩阵半张量积方法

doi: 10.3724/SP.J.1004.2011.00529
详细信息
    通讯作者:

    程代展

Analysis and Control of Boolean Networks: A Semi-tensor Product Approach

More Information
    Corresponding author: CHENG Dai-Zhan
  • 摘要: 布尔网络是描述基因调控网络的一个有力工具. 由于系统生物学的发展, 布尔网络的分析与控制成为生物学与系统控制学科的交叉热点. 本文综述作者用其原创的矩阵半张量积方法在布尔网络的分析与控制中得到的一系列结果. 内容包括: 布尔网络的拓扑结构, 布尔控制网络的能控、能观性与实现, 布尔网络的稳定性和布尔控制网络的镇定, 布尔控制网络的干扰解耦, 布尔 (控制) 网络的辨识,以及布尔网络的最优控制等.
  • [1] Waldrop M M [Author], Chen Ling [Translator]. Complexity. Beijing: San Lian Bookstore, 1997(Waldrop M M [著], 陈玲 [译]. 复杂. 北京: 三联书店, 1997)[2] Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 1969, 22(3): 437-467 [3] Kauffman S A [Author], Li Shao-Ming, Xu Bin [Translator]. At Home in the Universe. Changsha: Hunan Science and Technology Press, 2003(Kauffman S A [著], 李绍明, 徐彬 [译]. 宇宙为家. 长沙: 湖南科技出版社, 2003)[4] Kauffman S A. The Origins of Order: Self-organization and Selection in Evolution. New York: Oxford University Press, 1993[5] Aldana M. Boolean dynamics of networks with scale-free topology. Physica D: Nonlinear Phenomena, 2003, 185(1): 45-66 [6] Farrow C, Heidel J, Maloney H, Rogers J. Scalar equations for synchronous Boolean networks with biological applications. IEEE Transactions on Neural Networks, 2004, 15(2): 348-354 [7] Heidel J, Maloney H, Farrow C, Rogers J. Finding cycles in synchronous Boolean networks with applications to biochemical systems. International Journal of Bifurcation and Chaos, 2003, 13(3): 535-552 [8] Albert R, Barabasi A. Dynamics of complex systems: scaling laws or the period of Boolean networks. Physical Review Letters, 2000, 84(24): 5660-5663 [9] Akutsu T, Miyano S, Kuhara S. Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics, 2000, 16(8): 727-734 [10] Huang S, Ingber D E. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Experimental Cell Research, 2000, 261(1): 91-103 [11] Huang S. Regulation of cellular states in mammalian cells from a genome wide view. Gene Regulation and Metabolism. Cambridge: The MIT Press, 2002. 181-220[12] Shmulevich I, Dougherty E R, Kim S, Zhang W. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 2002, 18(2): 261-274 [13] Akutsu T, Hayashida M, Ching W K, Ng M K. Control of Boolean networks: hardness results and algorithms for tree structured networks. Journal of Theoretical Biology, 2007, 244(4): 670-679 [14] Cheng D Z. Semi-tensor product of matrices and its application to Morgan's problem. Science in China (Series F), 2001, 44(3): 195-212[15] Cheng D Z, Hu X M, Wang Y Z. Non-regular feedback linearization of nonlinear systems via a normal form algorithm. Automatica, 2004, 40(3): 439-447 [16] Cheng D Z, Ma J, Lu Q, Mei S W. Quadratic form of stable sub-manifold for power systems. International Journal of Robust and Nonlinear Control, 2004, 14(9-10): 773-788[17] Cheng D Z, Yang G W, Xi Z R. Nonlinear systems possessing linear symmetry. International Journal of Robust and Nonlinear Control, 2007, 17(1): 51-81 [18] Cheng D Z, Dong Y L. Semi-tensor product of matrices and its some applications to physics. Methods and Applications of Analysis, 2003, 10(4): 565-588[19] Cheng D Z. Some applications of semitensor product of matrices in algebra. Computers and Mathematics with Applications, 2006, 52(6-7): 1045-1066[20] Cheng Dai-Zhan, Qi Hong-Sheng. Semi-tensor Product of Matrices: Theory and Applications. Beijing: Science Press, 2007(程代展, 齐洪胜. 矩阵的半张量积: 理论与应用. 北京: 科学出版社, 2007)[21] Cheng D Z. Semi-tensor product of matrices and its applications: a survey. In: Proceedings of the 4th International Congress of Chinese Mathematicians. Hangzhou, China: Higher Education Press, 2007. 641-668[22] Mei Sheng-Wei, Liu Feng, Xue An-Cheng. A Semi-tensor Product Approach to Transient Analysis of Power Systems. Beijing: Tsinghua University Press, 2010(梅生伟, 刘锋, 薛安成. 电力系统暂态分析中的半张量积方法. 北京: 清华大学出版社, 2010)[23] Cheng D Z, Qi H S. Matrix expression of logic and fuzzy control. In: Proceedings of the 44th IEEE Conference on Decisions and Control. Washington D.C., USA: IEEE, 2005. 3273-3278[24] Boothby W M. An Introduction to Differentiable Manifolds and Riemannian Geometry (Second Edition). New York: Academic Press, 1986[25] Cheng D Z, Qi H S. A linear representation of dynamics of Boolean networks. IEEE Transactions on Automatic Control, 2010, 55(10): 2251-2258 [26] Cheng D Z. Input-state approach to Boolean networks. IEEE Transactions on Neural Networks, 2009, 20(3): 512-521 [27] Cheng D Z, Qi H S. Controllability and observability of Boolean control networks. Automatica, 2009, 45(7): 1659-1667 [28] Zhao Y, Qi H S, Cheng D Z. Input-state incidence matrix of Boolean control networks and its applications. Systems and Control Letters, 2010, 59(12): 767-774 [29] Cheng D Z, Qi H S, Li Z Q. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach. London: Springer, 2011[30] Cheng D Z, Li Z Q, Qi H S. Realization of Boolean control networks. Automatica, 2010, 46(1): 62-69 [31] Cheng D Z, Qi H S. State-space analysis of Boolean networks. IEEE Transactions on Neural Networks, 2010, 21(4): 584-594 [32] Cheng D Z. Disturbance decoupling of Boolean control networks. IEEE Transactions on Automatic Control, 2011, 56(1): 2-10 [33] Robert F [Author], Rokne J [Translator]. Discrete Iterations: A Metric Study. Berlin: Springer-Verlag, 1986[34] Cheng D Z, Qi H S, Li Z Q, Liu J B. Stability and stabilization of Boolean networks. International Journal of Robust and Nonlinear Control, 2011, 21(2): 134-156 [35] Zhao Y, Li Z Q, Cheng D Z. Optimal control of logical control networks. IEEE Transactions on Automatic Control, to be published[36] Cheng D Z, Qi H S, Li Z Q. Model construction of Boolean network via observed data. IEEE Transactions on Neural Networks, 2011, 22(4): 525-536 [37] Cheng D Z, Zhao Y. Identification of Boolean control networks. Automatica, 2011, 47(4): 702-710
  • 加载中
计量
  • 文章访问数:  3059
  • HTML全文浏览量:  47
  • PDF下载量:  3266
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-02
  • 修回日期:  2011-01-14
  • 刊出日期:  2011-05-20

目录

    /

    返回文章
    返回